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1. Introduction

Magnetic layered structures have been an object of extensive 
investigations in recent decades. The Fe/Gd multilayer is one 
of the most interesting systems of this sort, demonstrating 
a rich magnetic phase diagram. Depending on the applied 
magnetic field H and temperature T, different magnetic order 
types can be realized, including collinear and non-collinear 
alignment of the ferromagnetic (FM) layers with respect to 
the external field. In weak magnetic fields, the antiparallel 
ordering of FM layers prevails, with Fe magnetization ori-
ented either in the direction of the field (‘Fe-aligned state’) 
or opposite to the field (‘Gd-aligned state’). Due to a large 
antiferromagnetic (AFM) coupling at the Fe–Gd interface 
and relatively weak FM exchange in gadolinium, a suffi-
ciently strong external magnetic field can initiate essentially 

non-uniform distribution of magnetization inside Gd layers 
(‘twisted state’).

Magnetic properties of Fe/Gd structures have been inves-
tigated by a variety of experimental techniques (see reviews 
[1, 2]). In particular, the existence of different magnetic states 
and the possibility of strongly non-uniform distribution of the 
magnetic moment in Gd layers was clearly demonstrated by 
the resonant x-ray magnetic reflectometry technique in a set 
of works [3–7].

To describe magnetic properties of such a complex system 
theoretically, the mean-field approach is used [8]. In spite of 
its simplicity, this model predicts all the main features of the 
system. However, quantitative agreement with experiment 
is under question. Detailed magnetization data obtained in a 
wide range of temperatures and magnetic fields are described 
only qualitatively in the frame of the effective field model [9]. 
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The temperature dependence of magnetization in Gd layers 
was reported to be close to linear [10] which contradicts 
standard mean-field theory.

The reasons for the discrepancy between the experiment 
and the mean-field approach could be due to both the struc-
ture imperfections of the real Fe/Gd multilayer and insuffi-
cient accuracy of the theory. A weak point of the mean-field 
 approx imation is the simplified model assumption that the 
effective exchange field Hex is connected with the average 
magnetization M by simple relation λ=H Mex , where λ is 
a constant. To improve the effective field model, different 
approaches were proposed [11]. In particular, the constant 
coupling approx imation [12] leads to a more complex expres-
sion for the effective field ( )= ΦH T M,ex  which can be 
roughly written as ( )λ≈H T Mex  with temperature dependent 
effective field parameter ( )λ T .

In the present work we analyse magnetic properties of a Fe/
Gd superlattice in the frame of the mean field model taking into 
account a possible dependence of the effective field constant 
λ on temperature. The applicability of the proposed approach 
is tested via comparison of theoretical modelling results with 
static magnetization and FMR data obtained experimentally 
in a wide 5–295 K temperature range.

Recently, studies of magnetization dynamics in rare-earth/
transition-metal multilayers attracted attention as these mat-
erials are considered as candidates for the realization of ultra-
fast magnetic switching [13]. In particular, the Fe/Gd structure 
is a possible system of this sort [14]. Nevertheless, to the best 
of our knowledge, to date there have been no investigations 
of FMR in Fe/Gd multilayers below room temperature. In the 
work [15], we studied FMR in Fe/Cr/Gd systems which are 
essentially different from Fe/Gd. Indeed, introduction of the 
Cr spacer between Fe and Gd layers reduces the interlayer 
coupling significantly. As a result, in contrast to the Fe/Gd 
structure, the effect of magnetization twist in Gd layers for 
this system is negligible.

FMR in Co/Gd layered structures (similar to Fe/Gd 
 multilayers) was studied by several groups. In the work [16], 
FMR was investigated for trilayer Gd/Co(40 Å)/Gd struc-
tures with very thin (5–7 Å) Gd layers. In this situation, 
only a weak temperature dependent shift of the absorption 
line was observed which was described qualitatively on the 
basis of the mean-field calculations. In the works [17, 18], 
Co(30 Å)/Gd(75 Å) superlattices with much thicker Gd layers 
 demonstrated much stronger temperature dependence of FMR 
spectra. Two absorption lines were observed [17]. However, 
there were no attempts to analyse the data within the frame-
work of the mean-field model. Meanwhile, resonance frequen-
cies in magnetic multilayers are very sensitive to exchange 
coupling parameters of the system. Thus, a comparison of 
the experimental FMR data with the results of the mean-field 
modelling is of interest.

In the present work, we analyse the experimental FMR 
spectra in the Fe/Gd superlattice on the basis of the effec-
tive field approach, paying special attention to the role of 
magnetic relaxation in FM layers for FMR frequencies and 
resonance line widths. In addition to the more commonly 
used local Gilbert damping [16, 19], we analyse a non-local 

diffusion-type mechanism of magnetic relaxation which is 
recently discussed in view of its importance for potential 
development of spintronic devices [20, 21].

2. Sample and experimental techniques

A multilayer [Fe(tFe)/Gd(tGd)]12 structure with nominal FM 
layer thicknesses ≈t 35Fe  Å and ≈t 50Gd  Å was deposited 
using high vacuum magnetron sputtering on a glass substrate 
with 50 Å thick chromium buffer layer. To prevent oxidation, 
a 30 Å chromium cap layer was deposited on the top of the 
structure.

Structural characterization of the sample was performed 
by x-ray diffraction (XRD) and reflectometry (XRR). The 
measurements were carried out on a laboratory Empyrean 
PANalytical diffractometer using Cu αK  radiation. Figure  1 
shows the experimental XRR spectrum together with a  fitting 
curve. The structural refinement results are presented in 
table 1. We note that the sample has a well-defined layered 
structure with interfacial root mean square roughness of about 
1–2 atomic monolayers. This result is in agreement with [22] 
where the very sharp interfaces were found in Fe/Gd layered 
structures with negligible Fe–Gd interdiffusion.

The inset in figure 1 shows the experimental XRD pattern 
measured in θ θ− 2  geometry. The XRD spectrum demonstrates 

Figure 1. Experimental XRR spectrum of the studied  
glass/Cr(50 Å)/[Fe(35 Å)/Gd(50 Å)]12/Cr(30 Å) multilayer structure 
(points) and its approximation (line) with parameters shown in 
table 1. The inset demonstrates the experimental XRD spectrum.

Table 1. Parameters of the superlattice extracted from XRR.

Density Thickness rms roughness
Layer (g cm−3) (Å) (Å)

Glass Substrate 4.0 — 8.8
Cr Buffer 7.1 47.0 1.0

Fe ⌉
⌋ 
×12

7.9 33.6 1.4
Gd 7.8 49.8 3.5

Cr Cap layer 7.0 20.1 4.0
Cr2O3 5.6 18.6 9.0
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only one very broad peak corresponding to (0002) hcp Gd reflec-
tion. Such a broad peak indicates polycrystalline structure of the 
grown Gd layers. The corresponding correlation length esti-
mated via the Scherrer equation is about 20 Å. We detected no 
signal from Fe which means that Fe layers are likely to be amor-
phous when grown in a Fe/Gd multilayer on a glass substrate.

Static magnetization of the sample was investigated in the 
temperature range 5–295 K in magnetic fields up to 50 kOe, 
using a conventional SQUID magnetometer Quantum Design 
MPMS. Magnetic properties of the substrate were measured 
separately and its contribution was subtracted from the total 
magnetic moment of the sample.

FMR was studied using a laboratory developed transmis-
sion type spectrometer in the range of frequencies 7–37 GHz 
at temperatures 5–295 K in magnetic fields up to 10 kOe.

In all the experiments, the external magnetic field was 
applied in the film plane.

3. Calculation procedure

3.1. Static magnetization modelling

Magnetic characteristics of the superlattice were calculated 
using the mean field approach. The general idea of the calcul-
ation procedure is similar to that described in [2]. Due to a 
high TC and a large exchange stiffness of Fe layers, they are 
considered as homogeneously magnetized up to saturation 
value MFe

S  at temperatures under study. To model the mag-
netization distribution in Gd layers, they are divided into 16 
sublayers with atomic scale thickness /= ≈t t 16 3.1Gd  Å. The 
total energy per unit area of the superlattice is given by the 
sum over all sublayers:

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑∑= − + +

= =
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Here p is the index of superlattice period. For every p, the index 

l  =  0 corresponds to the Fe layer with thickness =t tp
0

Fe and 

magnetization vector M p
0 ( =M Mp

0
Fe
S ) and index = …l 1 16 

corresponds to Gd sublayers with thicknesses =t tp
l  and mag-

netization vectors M p
l . The first term under the sum in (1) is the 

Zeeman energy of the layer. The second term is the effective 

easy-plane anisotropy with constant K p
l , including demagne-

tizing factor (n is a unit vector normal to the film plane). The 
third term is related to the exchange part of the total energy. For 
this energy contribution, only exchange interactions between 
neighbouring layers are taken into account:
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(we bear in mind that ≡M 00
16  and ≡M 0p

17  because they do 
not correspond to any real layers). E p

0 in (2) describes AFM 

exchange interaction of Fe layers with neighbouring Gd sub-
layers (here J is the coupling constant at the Fe–Gd interface 
and MGd

S  is the saturation magnetization of Gd). The exchange 

energy in Gd layers E p
l  ( = …l 1 16) is described by effective 

field constant λ and consists of two contributions: interaction 
between different atoms in the same sublayer and interac-
tion between atoms of neighbouring sublayers. The relation 
between these two contributions is described by factors ζ 
and ζ∗ which can be treated as fractions of nearest neighbour 
atoms in sublayers ±l 1 and l: ζ = ±z zl 1/  and ζ =∗ z zl / . The 
total number of nearest neighbours is = + +− +z z z zl l l1 1 
which means ζ ζ= −∗ 1 2 .

In principle there could be a contribution to the total energy 
coming from magnetoelastic interaction [2]. However, in our 
model we neglect such a contribution because, according to 
our estimations, it does not have essential effect on static and 
dynamic properties of the studied sample.

In our calculations, we consider the case of a strong easy 

plane shape anisotropy and in-plane orientation of the magn-

etic field, so that static M p
l  vectors are also oriented in the 

film plane: ( ) =M n, 0p
l . This supposition is also in accord-

ance with experimental results reported by other authors for 
Fe/Gd superlattices with similar parameters [10]. To calculate 
static distribution of magnetization in this situation, we can 

write the energy (1) as a function of absolute values M p
l  and 

angles ϕp
l  between magnetization vectors M p

l  and the external 

magnetic field H. For given H and T we obtain:

( )ϕ=E E M ,p
l

p
l

stat (3)

(we do not write the explicit expression here because it can be 

obtained in an obvious way). To find M p
l  and ϕp

l , the following 
numerical iterative procedure is used. Starting from the initial 

approach with fixed M p
l , we minimize Estat over angles ϕp

l . 
Then, at fixed newly found ϕp

l , the new values M p
l  for Gd sub-

layers are recalculated using mean field formalism:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

µ
= = …M M B

H

k T
l, 1 16,p

l
s

p
l

Gd
S

B
 (4)

where Bs(x) is the Brillouin function for Gd spin s  =  7/2, 
µ µ= 7.5 B is the magnetic moment of the Gd ion, µB is the 
Bohr magneton, kB is the Boltzman constant and the effective 

fields H p
l  are defined by derivatives of the energy (1):

= −
∂
∂

H
Mt

E1
.p

l

p
l

p
l (5)

When the new M p
l  values are found, we return back to mini-

mization of the energy (3) and the procedure is repeated until 
the stationary self-consistent solution is found.

Depending on the initial approach, different solutions can be 
obtained, corresponding to different local minima of the energy. 

We consider the ‘quasi-periodic’ solution, when magnetization 

vectors M p
l , +M p

l
1 are close to FM orientation. This state is in 

accordance with experimental results [7] and seems to provide 
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global energy minimum. A more straightforward procedure to 
find the correct solution should minimize the free energy:

∑∑= − =
= =

F E TS S S M, ,
p l

p
l

1

12

1

16

( ) (6)

where S is the entropy of the system (mean field formulas for 
S(M ) can be found in [23]). We checked that our algorithm 
based on the energy minimization also provides the minimum 
of the free energy (6).

To compare with the experimental magnetization data, the 
resulting total magnetic moment per unit area of the superlat-
tice is defined by the expression:

∑∑ ϕ=
= =

m t M cos ,
p l

p
l

p
l

p
l

1

12

0

16

 (7)

which takes into account the fact that the net magnetization is 
oriented along the magnetic field.

3.2. Magnetization dynamics

The magnetization dynamics is described by Landau–Lifshitz 
equations (LLE) with relaxation terms:

[ ]γ= − +M M H R˙ , ,p
l

p
l

p
l

p
l

p
l (8)

where γ γ=p
0

Fe and γ γ=≠
p
l 0

Gd are gyromagnetic ratios for Fe 
and Gd respectively. For dissipative term Rp

l , we consider two 
contributions: ‘local’ and ‘non-local’. The local dissipation is 
described by Gilbert damping:

α
=R M M

M
, ˙ ,p

l p
l

p
l p

l
p
l

G [ ] (9)

where α α=p
0

Fe and α α=≠
p
l 0

Gd are Gilbert damping param-
eters for Fe and Gd respectively.

To describe spin diffusion effects, an additional ‘non-local’ 
damping in Gd layers is taken into account. We consider the 
diffusion type term proposed by Baryakhtar [24] which is 
written in the following form for the continual isotropic case:

η
δ
δ

= − ∇ = −R H H
M
F

, where .D
2

F F (10)

Here η is a phenomenological relaxation constant describing 
magnetic diffusion processes. For simplicity, we consider 
only precession motion of the vector M, and disregard pos-
sible dynamical changes of its absolute value M. Considering 
only the transverse relaxation for collinear magnetic state, the 
term (10) can be simplified to [25]:

[ ]η
γ

= − ∇R m m, ˙ ,D
2

 (11)

where m is a unit vector along M. In our calculations, we take 
into account this simplified form of the diffusion type term. 
It is correct in the region of high temperatures and low fields 
where the collinear phase dominates, though it is not quite 
accurate when the twisted state is considered.

To write (11) in the discrete case, we introduce discrete 
(one-dimensional) analogue of Laplacian:

→∇ ∆ =
− +− +

m m
m m m

t

2
.p

l p
l

p
l

p
l

2
1 1

2
 (12)

Taking into account this definition, the considered dissipative 
term has the form:

= − ∆ = …∗R m mA M l, ˙ , 2 15,p
l

p
l

p
l

D Gd
S [ ] (13)

where we introduce the coefficient /( )η γ=∗A MGd Gd
S . The 

damping term (13) provides additional dissipation for  essentially 
non-uniform precession modes in Gd layers. Indeed, consid-
ering the case of a flat spin wave δ= + ⋅m m m e kr

0
i  with 

wave-vector k in homogeneous ferromagnet, (11) transforms to 
Gilbert-type term with effective damping parameter ∗A k2 [26].

Taking into account the discussed dissipative terms, the 
resonance frequencies fn and corresponding line-widths ∆fn 
are calculated as real and imaginary parts of complex eigen-

values ωn of the system (8) linearized near static M p
l  position:

( )/ ( )/ω π ω π= ∆ = ⋅f fRe 2 , 2 Im 2 ,n n n n (14)

where n is the resonance mode number.

4. Results and discussion

4.1. Static magnetization

Figure 2 shows experimental magnetization curves at different 
temperatures and the result of their approximation within the 
mean field model in two cases. First, the best least-squares fit 
of m(H) curves was obtained considering constant λ (fit 1). 

Figure 2. Magnetization curves at T  =  30, 140 and 295 K. Points 
are the experimental data, dashed lines correspond to their best 
fit with constant λ, solid lines correspond to the best fit with 
temperature dependent λ (see table 2). Insets show low field regions 
with hysteresis loops.

J. Phys.: Condens. Matter 29 (2017) 115802



A B Drovosekov et al

5

Then, we tried to achieve a better fit taking into account 
temper ature dependence of the effective field parameter λ 
(fit 2). The resulting fitting parameters are shown in table 2.

In both cases the found MFe
S , MGd

S  and J values are close 
to each other. The obtained saturation magnetization values 
for Fe and Gd are noticeably smaller than their bulk values 
( ≈M 1750Fe

bulk , ≈M 2020Gd
bulk  emu cm−3). Partially, this effect 

can be ascribed to imperfections of Fe–Gd interfaces and 
intermixing of Fe and Gd atoms at them. However, the quality 
of interfaces is rather good in our case (see table  1). Thus, 
the most probable reason for the observed strong reduction 
of magnetization seems to be due to a large degree of struc-
tural disorder and amorphousness of the grown FM layers. 
Indeed, such effects were previously reported for both thin 
polycrystalline Gd [27, 28] and amorphous Fe layers [29]. In 
both cases the magnetization reduction can reach ∼ 50% of 
its bulk value.

The obtained interlayer AFM exchange energy ≈−J 40 
erg cm−2 recalculated per one interfacial atom gives approxi-
mately ≈−J 0.02 eV ≈ −200 K which is in accordance with 
[6]. The parameter ζ differs 1.5 times for fit 1 and fit 2. The 
value ζ≈ 0.33 obtained in fit 2 means /≈ ≈±z z z 3l l 1  which 
seems reasonable.

Approximation of the experimental data with temperature 
dependent λ provides much better quantitative agreement. 
The model predicts all the observed peculiarities of mag-
netization curves. In low fields ( �H 0.1 kOe), a collinear 
magnetic state is realized: ‘Gd-aligned’ at low temperatures 
(T  =  30 K) and ‘Fe-aligned’ at high temperatures (T  =  140, 
295 K). Increasing the magnetic field up to ≈H 2 kOe at 
T  =  30, 140 K, we observe a relatively weak increase of 
sample magnetization which is associated with a distortion 
of the collinear state near superlattice surface (‘surface twist’ 
state). Above ≈H 2 kOe the magnetization increases more 
rapidly due to a transition of the superlattice to the twisted 
state. The discussed effect is more pronounced at T  =  140 K 
while at T  =  30 K it is probably obscured by magnetic 
domains due to increased anisotropy in Gd. Examples of cal-
culated magnetization depth profiles for different magnetic 
states are shown in figure 3.

Figure 4 demonstrates experimental and calculated m(T ) 
curves obtained at different magnetic fields. It is clearly seen, 
that the experimental data can not be approximated well 
assuming the constant value of the effective field parameter. 
The m(T ) curve at H  =  6 kOe is described much better if we 
consider a second order curve for ( )λ T , passing through the 
three points (   )λ 30 K , (   )λ 140 K , (   )λ 295 K  determined above 
from fitting of the magnetization curves. An almost ideal 
approximation for H  =  6 kOe can be achieved using a third 
order polynomial:

( )λ τ τ τ≈ + − −T 800 505 255 310 ,2 3 (15)

where ( )/τ = −T T TC C with gadolinium Curie temperature 
≈T 200C  K defined from the mean-field relation:

Table 2. Fitting parameters of magnetization curves (figure 2) in 
the case when λ is considered as constant (fit 1) and in the case 
when λ differs for different temperatures (fit 2).

MFe
S MGd

S J

ζ λ(emu cm−3) (erg cm−2)

fit 1 1230 1150 −44 0.22 630

fit 2

380 (30 K)
1270 1150 −39 0.33 630 (140 K)

960 (295 K)

Figure 3. Calculated magnetization profiles at T  =  140 K for 
different magnetic fields: (a) H  =  0.1 kOe corresponding to  
Fe-aligned state (magnetization component along the magnetic field 
is shown), (b) H  =  1 kOe corresponding to surface twist state and 
(c) H  =  10 kOe corresponding to twisted state (the angle between 
the magnetization vector and the magnetic field is shown).

Figure 4. Magnetic moment per unit area as a function of 
temperature measured at H  =  0.3, 2 and 6 kOe (a). Points are the 
experimental data, lines are theoretical calculations with different 

( )λ T  dependences (b). The dashed line corresponds to constant λ, 
the dash-dotted and solid lines correspond to the second- and third-
order curves ( )λ T  respectively.

J. Phys.: Condens. Matter 29 (2017) 115802
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( )λ
µ

=
+

T
k T

M

s

s

3

1
.C

B C

Gd
S (16)

The obtained TC value is in agreement with [6].
The presence of a phase transition at ≈T 200 K is clearly 

seen as a kink on the m(T ) curve at H  =  6 kOe where a trans-
ition from twisted phase to Fe-aligned phase occurs. In the 
case of the weak field H  =  0.3 kOe, the Fe-aligned phase is 
 realized at �T 100 K. In this situation we do not observe essen-
tial peculiarities on the m(T ) curve at TC because of a strong 
exchange interaction at Fe–Gd interfaces. This interaction can 
be treated as an additional effective field acting on Gd layers 
which stimulates the FM moment above TC and obscures the 
ferromagnetic phase transition. As a result, we observe a rela-
tively smooth increase of the total superlattice magnetization 
with temperature, without a pronounced peculiarity at TC. For 
the intermediate field H  =  2 kOe, our calcul ations predict an 
existence of the surface twist state in the temperature range 
130–200 K while the twisted state is realized below 130 K. In 
this case we also observe only a weak kink on the m(T) curve 
as the structure transforms to collinear Fe-aligned state above 
=T 200C  K.
In the region of low temperatures and fields, the role of 

domain structure is probably important and the accordance 
between the experiment and the model calculation is not per-
fect (figure 4(a)). Nevertheless, the calculated compensation 
temperatures ≈T 90comp  K is in a good agreement with the 
experimental value.

4.2. Ferromagnetic resonance

Examples of FMR spectra obtained at fixed frequency and dif-
ferent temperatures are shown in figure 5. The sample demon-
strates two Lorentz-shaped absorption lines. One narrow peak 
is observed at room temperature. As temperature decreases, 

it broadens and shifts towards lower fields. The second peak 
observed at low temperatures shifts towards higher fields at 
heating. The resulting temperature dependencies of resonance 
field ( )H Tres  and linewidth ( )∆H T  for two lines at frequency 
25.9 GHz are shown in figure 6.

Examples of frequency vs field dependencies, f(H ), at dif-
ferent temperatures are demonstrated in figure  7. For both 
absorption lines, monotonically increasing f(H ) dependencies 
are observed.

The calculations of eigenfrequencies in the system were 
performed using model parameters obtained from static mag-
netization data (with temperature dependent λ). The dynamic 
characteristics are shown in table 3. For gyromagnetic ratio in 
Fe and Gd layers, we used the values for bulk Fe and Gd. The 
effective easy-plane anisotropy constant K had the same value 
for Fe and Gd layers corresponding to the shape anisotropy 
of a thin FM film (demagnetization factor π4 ). In particular, 
this anisotropy leads to the in-plane orientation of static mag-
netization for both Fe and Gd layers. For the local Gilbert 
damping parameters, we considered realistic values [30]. The 
non-local damping parameter A* was estimated from the FMR 
linewidth (more discussions are below). As a first approx-
imation, we neglected a possible temperature dependence of 
the damping parameters.

Figure 5. Examples of resonance spectra at f  =  25.9 GHz and 
different temperatures (30–285 K) shown in the plot. Two resonance 
modes are shown by arrows.

Table 3. Parameters used for FMR modelling.

/γ π2Fe /γ π2Gd

K αFe αGd

A*

(nm2)(GHz kOe−1)

2.94 2.80 12.6 0.01 0.02 0.025

Figure 6. Resonance field (a) and linewidth (b) as a function of 
temperature at f  =  25.9 GHz. Points are the experimental data, 
lines are the result of modelling. Dashed lines correspond to the 
case when only local Gilbert damping is taken into account. For 
solid lines, the additional non-local diffusion-type dissipative term 
in LLE is considered. Insets show calculated precession profiles 
(real part of eigenvectors) for different modes normalized on static 
magnetization distribution.

J. Phys.: Condens. Matter 29 (2017) 115802
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The complete calculated spectrum of eigenfrequencies for 
the [Fe/Gd]12 structure consists of a large number of reso-
nance branches f(H ) corresponding to standing spin-waves 
within the superlattice (figure 7). Experimentally, we observe 
only two resonance lines which are obviously associated with 
the most homogeneous precession modes. For this reason, 
we performed a modelling for one period of the superlattice 
Fe( /t 2Fe )/Gd(tGd)/Fe( /t 2Fe ) to calculate the eigenfrequencies 
corresponding to in-phase precession of the neighbouring Fe 
layers. Figure 7 demonstrates that this method allows identi-
fication of such modes among the resonance branches in the 
whole superlattice.

We used two approaches to modeling magnetic dynamics in 
the superlattice. The first one considers only Gilbert damping 
in each magnetic sublayer, while the second one also takes 
into account the non-local damping described by the term (13) 
in LLE. It must be noted that in our situation, the introduction 
of damping terms into LLE did not have much effect on the 
real part of eigenfrequencies in the region of low temperatures 
( �T 200 K). In contrast, the spectrum at high temperatures 
( �T 200 K) is strongly dependent on the used damping terms.

Figure 6(a) demonstrates a comparison of the experimental 
and calculated ( )H Tres  dependences. It is seen that the high 
temperature part of the ( )H Tres  curve is poorly described 
when only the Gilbert damping term in LLE is considered. 
In this case, the form of the ( )H Tres  dependence is strongly 
deformed by the presence of high-order spin-wave modes 
within the Gd layer. These modes are crossing with each 
other forming the complicated spectrum due to the effect of 

mode repulsion, while the experiment shows simple mono-
tonic ( )H Tres   dependence. This discrepancy can also be seen 
comparing the experimental and calculated f (H ) dependences 
when only Gilbert damping is taken into account (figure 7(d)).

Adding the non-local damping term to LLE changes the 
situation drastically. This term suppresses the high-order spin-
wave modes in the Gd layer and the resulting high-temperature 
branch of the ( )H Tres  dependence is described sufficiently well 
in the frame of the considered model (figure 6). Similarly, the 
experimental high-temperature f (H ) dependences are better 
described taking into account the non-local damping (figure 
7(c)).

Comparing the experimental spectra with model results, 
the types of precession modes for the observed resonance 
lines can be identified. The line at low temperatures  (figures 
5 and 6) corresponds to the low-frequency branch of the 
spectrum (figures 7(a) and (b)). This mode is associated with 
the in-phase precession of Fe and Gd layers (see the inset in 
figure 6). The line observed at high temperatures corresponds 
to the high-frequency branch of the spectrum (figures 7(b) and 
(c)). For this spectral branch, the precession phase of the cen-
tral part of the Gd layer is opposite the precession phase of 
the Fe layers.

Let us discuss in more detail the evolution of the two 
spectral branches with temperature. The f(H ) dependencies 
for both modes are presented in figure  7(b) at T  =  180 K. 
The low-frequency branch f (H ) calculated for one period of 
the superlattice demonstrates a critical field ≈H 4 kOe where 
the eigenfrequency vanishes. This field corresponds to a 
phase transition of the structure from the collinear Fe-aligned 
state to the twisted state. (Strictly speaking, when the com-
plete superlattice is considered, a weak surface twist takes 
place below ≈H 4 kOe, while the real transition to the col-
linear state occurs below ≈H 1 kOe.) As temperature rises, 
the magnetization of Gd decreases stabilizing the Fe-aligned 
phase. Thus, the phase transition to the twisted state is shifted 
to higher fields. As a consequence, the resonance field is 
increasing with temperature and the effect is observed exper-
imentally (the low-temperature branch in figure 6).

The high-frequency branch f (H ) is an ‘exchange’ mode. 
It demonstrates a gap in the spectrum at H  =  0. The value of 
this gap can be roughly considered to be proportional to the 
exchange stiffness of Gd layers. As temperature rises, the Gd 
exchange stiffness diminishes and the gap in the spectrum 
decreases. While measuring the FMR spectra at constant 
 frequency, the resonance line must appear at some temper-
ature in zero field and shift to higher fields at increasing 
temper ature. This situation is observed experimentally for the 
high-temperature branch in figure 6.

The correspondence between experimental and calcu-
lated dependencies f (H ) is good in the limit of high and low 
 temper atures (figures 7(a) and (c)). In the vicinity of Curie 
temper ature of Gd the agreement becomes worse (figure 7(b)) 
which fact is probably due to higher sensitivity of the calcu-
lated spectrum to the model parameters. Nevertheless, taking 
into account the simplicity of the model, the general corre-
spondence between experiment and theory for both f(H) and 

( )H Tres  dependencies is reasonable.

Figure 7. Resonance frequency as a function of applied field at 
different temperatures. Points are the experimental data, lines are 
the result of modelling. The thin lines correspond to calculated 
eigenfrequencies for the complete multilayer [Fe/Gd]12. The thick 
lines are the result of modelling of one period of the superlattice. 
For illustrative purposes, only the calculated modes with relatively 
small dissipation (∆ <f 10 GHz) are shown. The theoretical spectra 
((a)–(c)) are obtained taking into account the non-local damping 
term in LLE. As a comparison, the room-temperature spectrum 
calculated without this term is shown (d).
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The considered non-local damping term allows a qualita-
tive description of the linewidth behaviour. The calculated 
temperature dependence of the linewidth ( )∆H T  estimated 
by formula ( / )∆ ≈∆ ⋅H f H fd dres  is shown in figure 6(b). The 
experimental ( )∆H T  dependence for the high-temperature 
branch of the spectrum can be approximated well within the 
considered model with damping parameters shown in table 3. 
For the low-temperature branch, the correspondence is not so 
good. One of the reasons for this could be the limited appli-
cability of the simplified form of the non-local damping term 
used (11). Strictly speaking, this form is correct only when 
the collinear phase is considered which is the case for the 
high-temperature spectral branch in figure 6. In contrast, the 
low-temperature branch in figure 6 corresponds to the twisted 
state where more complicated diffusion type terms must be 
taken into account [25]. Of course, other mechanisms of line 
broadening cannot be excluded. In particular, the polycrystal-
linity of the Gd layers may have significant influence on the 
line-width at low temperatures.

4.3. Discussion

As can be seen from our analysis, the simple molecular field 
approach to modelling the Fe/Gd superlattice does not provide 
good approximation of the experimental results. Nevertheless, 
a formal supposition of a temperature dependent mean-field 
parameter seems to be productive and leads to good approx-
imation of both static and dynamic magnetic properties of the 
sample. A physical basis for such a supposition may become 
clearer if we consider improved effective field approaches.

In contrast to the molecular field theory where the indi-
vidual spins are considered as statistically independent, the 
constant coupling approximation [12] takes into account pair 
correlations of the nearest neighbour spins. Within this theory, 
the exchange energy can also be treated in terms of the effec-
tive field Hex acting on the spin. However, this effective field 
has much more complex form ( )= ΦH T M,ex  as compared the 
case of the molecular field approximation λ=H Mex . A rela-
tively simple expression for Hex can be obtained in the case of 
homogeneous ferromagnet with spin 1/2. In the limit of small 
magnetization �M MS, it has the form ( )λ≈H T Mex  with

( )
⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤
⎦
⎥λ ∼ − −T

k T

J

J

k T2
1 exp

2
,B

1

1

B
 (17)

where J1 is the exchange energy between nearest neighbour 
spins. The approximation (17) is valid for �T TC. However, it 
is roughly true even for ∼T TC.

According to (17), ( )λ T  is an increasing function of temper-
ature that is in qualitative agreement with the  exper imental 
result. However, to make a quantitative comparison, more 
detailed theoretical microscopic analysis is needed, taking 
into account the real Gd spin value and considering the com-
plex magnetic structure within Gd layers.

Besides the static magnetization data, FMR results are 
also described relatively well using the proposed approach. 
However, as shown, the additional non-local damping (11) in 
LLE must be considered for a better description of the reso-
nance spectra.

Recently, the dissipative term (11) was found to be impor-
tant to describe magnetization dynamics in thin films and mul-
tilayers based on FM metals [20, 21, 26]. Physically, this term 
is attributed to dissipative spin currents within metallic ferro-
magnet. The value of damping coefficient A* found in [26] for 
transition ferromagnetic metals is estimated as ∼∗A 0.1 nm2. 
In our case of Gd layers, the non-local damping parameter 
A* is about four times smaller (see table 3). The reason for 
this could be due to the different character of magnetism in 
rear-earth 4f-metals. In contrast to transition 3d-metals, the 
rear-earth 4f-metals demonstrate much weaker spin polari-
zation of itinerant electrons being coupled relatively weakly 
with the spins of localized 4f electrons [31]. Thus, the effects 
of spin diffusion in Gd are expected to be much weaker than 
those in transition 3d-metals.

5. Conclusion

In this work, the experimentally obtained magnetization 
curves and FMR spectra of the Fe/Gd superlattice were ana-
lysed in the frame of mean field approximation in the wide 
range of temperatures 5–295 K. As a consequence, we would 
like to point out two main results.

First, we found that both static and dynamic magnetic prop-
erties of the sample can be described well by the mean field 
model only if we suppose a significant temperature depend-
ence of the mean field parameter in Gd layers. Second, the 
FMR data clearly demonstrated the importance of non-local 
damping in Gd layers to describe the magnetization dynamics 
in the multilayer.

In the frame of our phenomenological analysis, we cannot 
tell with certainty about the microscopic origin of these 
effects. The experimentally observed temperature depend-
ence of the mean field parameter obviously indicates limited 
 applicability of the simple Weiss molecular field approach in 
the  considered case. The reasons for this can be both structural 
imperfections of the real sample and insufficient accuracy 
of the mean field approximation. In the latter case, the con-
stant coupling approximation could probably provide better 
description of the experimental results. However, a modifica-
tion of this theory is needed to be applied to the considered 
Fe/Gd system where complicated magnetic order types are 
realized.

A possible reason for the observed effect of non-local 
damping could be due to dissipative spin currents in Gd 
layers. The obtained value of the non-local damping in Gd is 
noticeably smaller than that for transition metals. This result 
can indicate relatively weak spin diffusion effects in rare-earth 
metals.
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