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A method fof the numerical solution of Abel’s integral equation, based on the expansion
of the unknown function in orthogonal polynomials, is presented.

. Abel’s integral equation
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F(x)= —, <z<a,
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. in which F(x) is given, and f{y) is an unknown function, has a known exact solution (see
[1,2D)
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However, in the case where the original function F(x) is specified with an error, its direct
use is limited, and in fact up to the present time there has been no sufficiently simple and
efficient algorithm for the numerical solution of Abel’s equation taking this error into
account (see, for example, [3], where detailed references are given).

The optimal method of solving Abel’s equation numerically (that is, the one giving
the least loss of accuracy in comparison with the accuracy of the initial data) must take
into account both the statistical properties of the function F(x), connected with the errors
. of measurement, and also the analytlc propertles of Abel’s transformation, expressed by

Eq (™).

In this paper we present a method of calculating the unknown function f{x) which
takes these factors into account. This method is based on the expansion of the unknown
functlon fx)i in elgenfunctlons of the integral operator :
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which are the power functions fn(z)=znfor n=0, 1, 2, ... (see [2]). The correspondiﬁgz
eigenvalues are calculated by the recurrence formula

Ao=1, kn=7»n_1/(1+1/2n), n=12....

Therefore, f (z) =z", implies that F(z) =2}»;x"V z. A difference of F(x) from the latter
expression can only be due to errors of measurement.

In all the physical applications of Abel’s equation the unknown function f(x) can fl;)e“
approximated with sufficient accuracy by a polynomial of finite degree o

f(x)=kaw", 0<z<a. @
h==0 =

In this case the experimental function F(x) must be represented in the form

FE)=0( ) Mt NOoR

where Q(z)=27z.

The expansion (3) is found by the method of mean-square approximation by the

functions : "
O (z) =@ (2) Pp(z),

orthogonal in the given segment 0<z<a with weight
w(z) ~1/[6F (z) ]2,

where 8F (z)>0 is the mean-square error of the measufement of the function F at the
point x and Px(z) are orthogonal polynomials in the segment [0, a] with the weight
function ¢(z) =w(z) ¢*(z).

Depending on how the function F(x) is specified, different systems of polynomials
are constructed. For a continuous definition of F(x) and w (z) =const these polynomials
are the classical Jacobi polynomials P4(%*) ((2z—a)/a).When F(x) is specified at a discrete
 system of points zi, z, ..., z, the correspohding orthonormal system of polynomials of

" degree not higher than n — 1 is constructed (see [4]). The degree m of the approximating -
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polynomial is chosen by the method of regress1on analys1s usmg the statistic

x==2{[F<xo cp(x,)ZchPm ] [6F (29 1- i}

fe=q

which i is distributed like X?n-m— 1(see [5]).

While determmmg the orthogonal polynomlals, their coefficients are calculated and
thereby the required expansion .

F(2)=(2) 2 Fuah, @

After this we calculate
fh=F %/

and by Eq. (2) we find f{x). The corridor of errors of the recovered solution, arising due to
random errors in the initial data, is calculated by the formula

8f(@)=2 [ Z (DF) ap %2/ (Aag) ] ", )

@, B0

In this expression DF is the covariance matrix (the error matrix) of the coefﬁ01ents K
determined in obtaining the expansion (4).

This corridor of errors, or the non-removable error, corresponds approximately to
the 95% confidence zone for the solution f(x) (see {5, 8]). In practical problems the
principal source of the reconstruction error is the presence of random errors in the original
data. Therefore, the estimate (5) of the error is inescapably of a probability nature.

It is obvious from (5) that the numerical stability of the proposed method is
completely determined by the law of increase of the numbers 1/An as the degree of
~ approximation increases. From the asymptotic formula

1/Am=7[2(2m+1) /n] if m>1,

already giving an error of less than 5% for m=3 it can be established that for 5<m<10 the
value of 1/An, and consequently also the accuracy of the definition of the function f{x)

is only less by a factor of 3—3.5 than the accuracy with which the original function F(x)

is g1ven
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The use of polynomials of finite degree is essentially a method of regularizing’thé" T |
solution of Abel’s integral equation, enabling the growth of errors to be limited. This =
method is based on a well-known theorem of Picard (see [1]) on the expansion of the = -
solution in mutually conjugate characteristic functions of the kernel. -

We mention that the expansion of the function F(x) in orthogonal polynomials in'? o
equation (1) used in [3, 6] instead of f{y) as in the present paper, leads to a narrower class =
of reconstructed functions. For example, functions f(y)#0 for y=0 (or I(r)*0 for r=R
in Eq. (6), see below) are not permitted. We also notice that the problem could be solved
by using stable methods of numerical differentiation based on the approximation of the
function to be differentiated by polynomials of finite degree [7]. However, the method
proposed by us is simpler, since it does not require a preparatory calculation of the
integral. :

As an example we consider two physical problems. The first refers to the physics of
‘a plasma: in the measurement of the radial distribution of the radiative intensity of a
cylindrical plasma column the equation :

YR I(rradr
1(z)=2 j 1Y (22 +y%) dy = 2 j Ty 0<z<R, 6)

has to be solved, where J(x) is the measured function, and I(r) is the unknown function
(see [6]). By the change of variables

p=R:-r%  i(p)=I(YR*-p))
Eq. (6) is reduced to Abel’s equation for the functions J and i.

The following problem was solved to check the accuracy of the proposed method and
compare it with previously known methods. For the two functions

" 1-2r2,  0<r<05,
! —{2(1-—r)2, 05<r<i

(this function has been used by a number of authors (see [3]) for checking the accuracy
of a method of solving Abel’s equation, and therefore it is suitable for comparison), and

La(r)=(1—r)" + exp [— ( r‘;;'G ) z] + exp [— ( rO-‘|-30.6 ) z’] +05
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the integral J(x) was evaluated by Eq. (6) with an accuracy up to 10°5 for 51 values of x
from 0 to 1 with a step of 0.02. To the values obtained were added random normally
distributed “errors of measurement” with zero mean value and variance ¢. (The tables of
random numbers used are given in [8].) From these data the approximate solutions T, (r)
and T, (r). were obtained. The calculations were carried out on the BESM-6 computer; the
time for computing the first version was ~4 sec. The results of the reconstruction for
¢=2.10—% are shown in Table 1.

TABLE 1
? \ . The error of
I, i, (P =1, (), The estimate of the reconstruction
, the the the actual error of by the method
exact given error of reconstruction from desg ribed in [3] for
solution method reconstruction ) o= 10

0 1.000 1.0040 40.0040 0.0020 © 40,0012
0.1 0.980 0.9811 -}-0.0011 0.0012 0
0.2 0.920 0.9185 —0.0045 0.0007 —0.0006
0.3 0.820 0.8207 -+0.0007 0.0006 ~4-0.0010
0.4 0.680 0.6799 —0.0001 0.0006 . —=0.0006
0.5 0.500 0.4999 --0.0001 A 0.0005 -+0.0003
0.6 0.320 0.3199 —0.0001 0.0005 —0.0001
0.7 0.180 0.1800 0 0.0006 —0.0004
0.8 0.080 0.0799 —0.0001 0.0007 ~ 40.0007
0.9 0.020 0.0207 -+40.0007 0.0009 —0.0002
0.951 0.005 0.0049 —0.0001 0.0010 . -4-0.0023
1.0 0 0.0058 -0.0058 0.0062 0

It is obvious from the data presented that the “ .

proposed method has approximately the same E °.'.° ~ 20

accuracy as the best of the previously known , N I

methods [3]. However, as mentioned above, in 3t .‘..

the proposed method it is not obligatory that

I(r)=0 for r=R, asis required in [3], and -8

therefore it has a wider field of application. The 2

estimate of the reconstruction error by Eq. (5) is
fairly close to the actual error.

Figure 1 shows the results of the 1t
approximated function T»(r) for the errors of
meéasurement o=0.1. It is obvious from Figure 1
that the method is also applicable to these
(comparatively large) errors in the original data; FIG. 1
the recovered function reproduces the features ® are the original data; ] is the
of the solution, and the exact solution lies - prrcl))xin&?tion of the Ofigilflal

eiq s . ata by the expression or
almost completely within the corridor of errors "2 5 e’ cI())n'id or of gu ors

of recovery calculated by Eq. (5). of the reconstructed solution;
R 3 is the exact solution,

0 0z 04 06 08 1o
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The second problem relates to physical electronics. In the processing of data from “
measurements of the emission in a high-frequency field it is required to solve the equation _ ‘

- n/2

1(E)=— j I(E sin ¢)dg,

in which J(E) is the measured, and J(E) the unknown function [9]. By the change of
variables

E=Ya,  Esimo=Vy, I(f)/ly=f), I(5)=F()

Eq. (7) can be reduced to Abel’s equation. However, it is more convenient to solve Eq. (7)
directly by expanding the solution I(F) in eigenfunctions of the integral operator

n/2
Ll =— j‘z(E sin @) do,

0

which are also power functions E” for n=0,1,2, ... . The eigenvalues My, of the operator
L are calculated from the relations

P«o=1/2, H1=1/JT,
Wn=Wn_2(1—1/n),
n=2 3, ....

The calculations carried out show that the accuracy and stability of this method of
numerical solution of the integral equation (7) correspond mainly to the characteristics
for the method of numerical solution of Abel’s integral equation explained above. The
method described was used in practice for measuring the cathode loss in a microtron [9].

In conclusion we mention that the proposed method for the numerlcal solution of
Abel’s integral equation has a natural generalization for the equation

F(z)= f(y)dy
! (z—y)©

o<a<i,

with an arbitrary index a.

N
¢

The éuthor thanks L. A. Vainshtein for useful discussions.
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