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Abstract. A new method is presented for the analysis of spectra from
spectrometers with a complicated instrumental function such as a comb-like one
which may be represented as a sum of several narrow peaks shifted relative to one
another. The method is based on the solution of the convolution integral equation
using the signal restoration procedures employed in the software package
RECOVERY. It is implemented for the case of a spectrometer consisting of a
scanning Fabry–Pérot interferometer and a grating monochromator having equal
rates of scanning. The efficiency of the procedure is demonstrated by applying it to
the photoluminescence (PL) spectra of excitons bound to the isoelectronic
hydrogen-related centres in silicon grown in a hydrogen atmosphere. It is shown
that the spectral density of the analysed radiation is resolved successfully and that
the spectrometer has effectively a greater working range and signal-to-noise ratio
in comparison with the standard Fabry–Pérot interferometer. The procedure can be
used in any kind of high-resolution spectroscopy (optical, x-ray, neutron, etc).

1. Introduction

Any spectral instrument introduces distortions in an
analysed spectrum. It is well known (see for example
[1–7]) that under the general assumptions defined below
the output signalF(x) of any linear spectrometer is the
sum of the integralF0(x), the distortion introduced by the
spectrometer, and the noiseN(x) which is always present
in the output of a real spectrometer

F(x) = F0(x)+N(x) (1)

where∫ b

a

K(x, y)G0(y) dy = F0(x) c ≤ x ≤ d. (2)

In equation (1) we assume that the noise is not correlated in
successive measurement points and that it is additive with
the signal. If this is not the case (for instance in Poissonian
noise), (1) can be considered as a definition of a random
function, N(x), which equals in this case the difference
between the random output signal and the integralF0(x).
In both cases we also assume thatF(x) does not contain
systematic errors, i.e.N(x) = 0.
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In equation (2),F0(x) represents the signal which
would be on the output of the spectrometer in the absence
of noise, K(x, y) is the instrumental function of the
spectrometer andG0(y) is the spectral density of the
analysed radiation which is the subject of the reconstruction
procedure. The integration is performed over the interval
(a, b) in whichK(x, y) is different from zero. The interval
(c, d) gives the limits of the wavelength range.

It can be seen from (1) and (2) that if noise is present,
G0(y) cannot be recovered exactly. In this case all that we
can hope for is to find a functionG(y) which is the optimal
or near-optimal estimation ofG0(y) in some statistical
sense.

If the noise is absent, reconstruction of the spectral
density of the analysed signal is reduced to the solution of
the integral equation (2) which, in this case, can be solved
exactly.

When the noise is small, and the instrumental function
(kernel of equation (2)) is close to theδ-function

K(x, y) ≈ δ(x − y)
the spectrometer itself solves the problem and the output
signal approximately equals the spectral density of the
analysed radiation, i.e.

F(x) ≈ G0(x).
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If the instrumental function of the spectrometer is
noticeably wider than the features of a spectrum or if it has
a complicated form (e.g. several overlapping peaks), the
output signal can differ very distinctly fromG0(x) and its
reconstruction from the measured functionF(x) ≈ F0(x)

necessitates the solution of the integral equation (2).
In real situations there is always noise on the output

of a spectrometer and the instrumental function differs
appreciably from aδ-like function. In this caseF(x) is
a random function and for reconstruction of the solution
G0(y) from equations (1) and (2) we have to take into
account both that the signal is random and that the problem
(1), (2) may fall into the set of ill-posed problems [2]. We
note that the extent to which the problem is a well- or ill-
posed one is determined mainly by the kernel in the integral
operator (2). The randomness of the input data introduces
further difficulties to the problem of signal reconstruction.
The software for signal recovery from noisy data used in
this paper is based on the maximum likelihood principle
[7] and it takes into account both of these circumstances.
A more detailed description of this software is given in
section 3 of this paper. We would like to note here that the
quality of restoration ofG0(y), i.e. the difference between
G(y) andG0(y), depends on many factors, among which
are the profile of the instrumental function, the value of the
signal-to-noise ratio and the method of restoration.

As a rule, we use spectrometers with a narrow
instrumental function with one brightly expressed peak. In
this case the spectrum recorded reflects the main features
of the analysed spectrum. Even in this case the use of
restoration programs can increase the spectral resolution
appreciably and reveal additional structures in a spectrum.
If the instrumental function is fairly complicated (e.g. it has
a number of well resolved maxima), the measured spectrum
F(x) will differ significantly from the analysed spectrum.

In the present paper we show that the solution of the
inverse problem for a spectrometer with a complicated
instrumental function permits the successful reconstruction
of the unknown spectrum and gives an opportunity for
substantial enhancement of the performance of standard
spectral equipment (for example, use of a Fabry–Pérot
interferometer in large spectral intervals without reduction
of its resolving power). We stress that such an enhancement
of the resolving power of a spectrometer is actually
impossible to achieve without the use of computer
programs.

2. The spectrometer

The basic ideas outlined in the introduction were realized
experimentally in a spectrometer that consists of a
scanning Fabry–Ṕerot interferometer and a scanning grating
monochromator. It is shown schematically in figure 1. The
detector is a cooled photomultiplier tube (PMT) operating
in photon counting mode. The spectrometer is controlled by
the unit of control and data acquisition (UCDA) connected
to a personal computer (PC).

The analysed radiation passes through the interfero-
meter and the grating monochromator and it is then detected
by the PMT. Voltage pulses arising on the PMT load are

Figure 1. Schematic diagram of the spectrometer. Broken
lines show the path of the analysed light. Full lines show
communications between different blocks of the
spectrometer.

registered by a counter located in the UCDA and recorded
into a PC file.

For fine filtering of the radiation we used a scanning
Fabry–Ṕerot interferometer with a fixed distance of 1 mm
between mirrors placed in a chamber filled with CO2

gas. The interferometer mirrors have a multilayer
dielectric cover with a reflection coefficient of∼85–90%
at λ ∼ 1 µm. The spectral resolution (FWHM) and energy
separation between the orders of interference was 30µeV
(0.24 cm−1) and 620µeV (5 cm−1) respectively. The gas
pressure in the interferometer chamber could be changed
from 0 to 5 atm. and was controlled by an absolute pressure
gauge. The value of the pressure was monitored by the
UCDA and recorded into a PC file.

The instrumental function of the interferometer
obtained by recording of the very narrow line atλ =
1.15µm from a helium–neon laser is shown in figure 2(a).
The use of such an interferometer for the spectral analysis
allows the scanning of spectra contained in a narrow
spectral interval, approximately equal to the distance
between the nearest orders of interference.

For coarse filtering of the radiation we use the
scanning grating monochromator with a linear dispersion
of 4 nm mm−1. Spectral scanning is achieved by rotating
the diffraction grating (600 lines per mm) by discrete angle
steps18 using a stepping motor with an appropriate speed
setting. This permits us to set the scanning rates of both
the monochromator and the interferometer to be equal. The
instrumental functions of the monochromator obtained by
recording the helium–neon laser line atλ = 1.15 µm for
two slit widths (0.12 mm and 0.4 mm) are shown by broken
curves in figures 2(b) and (c) respectively.

The scanning of spectra is performed in the following
way. First of all the scanning rates of the monochromator
and interferometer are set to be equal to each other. In this
case we haveK(x, y) = K(x − y). The monochromator
with a fixed slit width is then tuned at the initial point
of the spectral interval to be analysed. We may choose
a symmetrical instrumental function of spectrometer (see
figures 2(b) and (c)) by changing the initial pressure and
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Figure 2. Instrumental functions used for spectral density
recovery: (a) is the instrumental function of the Fabry–Pérot
interferometer; (b) and (c) are the instrumental functions of
the grating monochromator (broken curves) and the
instrumental functions of the spectrometer (full curves) for
slit-widths equal to 0.12 mm and 0.4 mm respectively. The
instrumental functions of the spectrometer were obtained
by multiplying appropriate instrumental functions of the
monochromator and the interferometer, m is the order of
interference. The distance between marks equals the
energy distance between the nearest orders of interference
(in this case, it is 0.62 meV or 5 cm−1).

by controlling the pressure change1P , angle18 and time
interval 1t with the UCDA and PC while the counter
registers pulses from the PMT. The spectrometer then
begins the scanning procedure. When the interferometer
and the monochromator have performed one step the UCDA
turns on the counter for a time interval1t . The UCDA
initiates a new step until the spectrometer has completed
the scan of one order of interference. At this moment
the UCDA stops the monochromator and returns the
interferometer to the initial state. The cycle is repeated until
the spectrometer has covered the whole spectral interval
under analysis.

The spectrometer may be used in many modes. We
describe here only two of them, i.e. when

K(x, y) = K(x − y).
In this case equation (2) is a convolution integral.

In the first mode the width of the monochromator slit
is narrower than the interval by one order of interference
and therefore the spectrometer has theδ-like instrumental
function shown in figure 2(b) by the full curve. Typically,
the spectrum recorded by the spectrometer in this mode

is close to the analysed spectrum, and its analysis can
be carried out in a wide spectral interval. The main
drawback of this mode is the need to use a very narrow
monochromator slit width. This results in a sharp decrease
of the signal-to-noise ratio. For this reason we consider
further a more appropriate mode of operation.

In the second mode the monochromator slit width is
chosen reasonably large to increase the intensity of detected
light and the signal-to-noise ratio. In this case several
orders of interference fall into a spectral interval that
corresponds to the slit width. The instrumental function
then has the comb-like form shown in figure 2(c). This
function may be obtained by multiplying the instrumental
functions of the interferometer and the monochromator. It
should be noted that the maximum number of peaks in the
instrumental function (and hence signal-to-noise ratio) is
restricted by the accuracy in movement of the diffraction
grating and the discrepancy between the instrumental
function used for restoration and a real one. In our case it
was found that the instrumental function with five peaks is
optimal.

It will be shown that the recorded spectrum differs
markedly from the analysed spectrum in all spectral
intervals because in this mode several spectral intervals
are analysed simultaneously. Consequently, the use
of computer programs for signal restoration becomes
inevitable. As the signal-to-noise ratio in this mode is to
be improved, it is reasonable to expect that the restoration
procedure will not only restore the analysed spectrum, but
will also increase the resolving power of the spectrometer.

3. The procedures for signal recovery

In this section we consider only the main points of the
used procedures for signal recovery and we address readers
to a more detailed discussion of this subject in [6] and
[7]. In order to solve the integral equation (2) with
random right-hand side data we use the program DCONV
from the program package RECOVERY [7]. All programs
from this package are based on the maximum likelihood
method (MLM) because this method retains the capability
for attaining the superresolution limit.

Let us introduce first some useful definitions concerning
the superresolution. The resolution of any linear device
with the instrumental functionK(x) can be defined as the
effective width of this function, i.e.

1 =
∞∫
−∞

K2(s) ds s = x − y (3)

providing the normalizing condition at the originK(0) = 1.
The resolution of spectral devices can be improved

in comparison to1 using modern techniques for solving
integral equations, thus superresolution is achieved. We
define the superresolution factor as the ratio of1 to
the separationδ between two narrow lines which can be
distinguished after the deconvolution procedure

SR = 1/δ. (4)
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We note that Rayleigh’s definition of resolution yields
δ = 1, so in this case the superresolution factor isSR = 1.
When the resolution is improved mathematically,SR > 1.
The improvement is always limited by noise. At zero
noise an exact solution of equation (2) can be found, which
corresponds to an infinite superresolution.

The highest possible superresolution factor is closely
related to Shannon’s theorem about the highest possible
transmission rate of information through a noisy channel
[6]. When a spectrum is not parametric, i.e. the function
we want cannot be described by a simple formula with a
few parameters, the limiting superresolution factor is

SR = 1
3 log2(1+ Es/En). (5)

HereEs is the signal energy,Es =
∫∞
−∞ F

2(x) dx; andEn
is the noise energy,En = nσ 2, wheren is the number of
experimental data points, andσ 2 is the variance of input
noise. If the signal-to-noise ratio is expressed in decibels
dB = 10 log(Es/En), the approximate expression for the
superresolution limit is

SR ' dB/10. (6)

At a signal-to-noise-ratio of about 30 dB (this value is
valid for the experimental data discussed below), it follows
from equation (6) thatSR ' 3. This means that we
can resolve some details in the reconstructed signal at a
minimal distance three times better than the size1 of the
instrumental function.

When the signal we want can be described by a formula
with a few parameters, the superresolution is determined
by the Cramer–Rao inequality [8] and it may be higher
than the predicted by equation (5). But when the shape of
the spectrum is unknown and the aim of the experiment is
to determine the shape, the parametric approach does not
work, and resolution is determined by equation (5).

According to the MLM the likelihood function

L = P

should be first defined, where

P = P(F |G0)

is the conditional probability of observing a set of
experimental data points

F(xi) i = 1, 2, . . . , n

which coincides with the real data set, providing that the
solution isG0.

We may consider the set of unknown values of the
function G0(yj ), j = 1, 2, . . . , m as a vector in anm-
dimensional space of solutions. Each point in this space
corresponds to one possible solution, and the next step is
to search for the likelihood function maximum on a set of
solutions limited by some necessary restrictions. For many
problems, including those of high-resolution spectroscopy,
an important condition is that the solution is not negative.
An explicit form of the likelihood function for the case of

polynomial data statistics is given in paper [3]. Poissonian
statistics are a special case of polynomial statistics.

If the data are described by Gaussian statistics, then the
logarithmic likelihood function is the square of deviation
between the experimental data{F } and their approximation
{F̂0}, i.e.

logL = constant− 1
2||F − F̂0||.

Here the two vertical lines denote the square norm and{F̂0}
is the integral transform (2) of the trial solution̂G0, i.e.

F̂0 = KĜ0.

The search for the likelihood function maximum is
performed iteratively by the steepest ascent method which
is a sign-inverted variant of steepest descent method.
All explicit formulae of iterative algorithms for both
polynomial and Gaussian input data statistics can be found
in reference [7] and a full listing of the RECOVERY code
in Fortran 77 is available from the CPC Program Library
providing that persons requesting the program sign the
standard CPC non-profit use licence.

The subroutines MLP8, MLG8 or MLU8 are used
depending on the noise statistics. The first of these
subroutines is intended for input data having Poissonian
statistics. The second and the third are designed for
data having Gaussian statistics. All three subroutines
allow reconstruction of non-negative signals from noisy
experimental data distorted by the measuring device.

There are also enhanced versions of the above
mentioned subroutines, which use the conjugate gradient
method for maximization of the likelihood function instead
of gradient one [7]. The ready-to-use (executable) form of
this enhanced software for IBM-compatible PCs is available
from the second author (ELK). The only difference between
ordinary and enhanced versions of the programs is the
number of iterations or the computation time and hence
it is essential for older PCs, but it is not essential for more
powerful Pentium PCs or other new computers.

The data arrays in the upgraded program have been
increased to handle 4096 input points in order to allow
application of the program to spectra which contain many
narrow peaks. The code requires knowledge not only of
the kernelK(x, y) of the integral operator (2) but also
the input data probability distribution function (PDF). Our
measurements have shown that the input data may be
described with reasonable accuracy by Poissonian statistics.
This is the case because of the type of detector (PMT) we
used (see e.g. [9]).

The total number of detected photons in our
measurements was about 2× 105–106 for 2048–4096
spectral channels. This gives∼50–500 photons per spectral
interval. It is well known [8] that for such great numbers
of photons the Poissonian statistics are reduced to Gaussian
and we have

y = y0+√y0 ·N (0, 1). (7)

In equation (7)y = y(i) is the observed spectral intensity
of light at wavelengthλ = λi , y0 = y is the unknown mean
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value of y at λ = λi andN (0, 1) is the random variable
with Gaussian probability distribution function having

N = 0 andσ 2(N ) = 1.

Taking the square root from both sides of equation (7) we
have approximately aty0� 1

√
y ≈ √y0+ N (0, 1)

2
. (8)

The residuals between the left- and right-hand sides of
equation (8) are shown in figure 3(a) as a function of point
number i for the input data presented in figure 4(a) and
the PDFs for the residuals in normal (Gaussian) probability
scale (see§12 in [10]) are shown in figure 3(b). It is clearly
seen from figure 3(b) that the residuals have a Gaussian
PDF. From these data we have the estimation

σ̂ ≈ 0.385

which is a little less than the theoretical valueσ = 0.5
according to equation (8) (see also No 6g.2 in [8]). Such
statistics are often observed in spectroscopy for input data
obtained by a PMT. In this way we ascertain that our
input data have approximately Poissonian statistics. The
residuals presented in figure 3 were obtained using the
optimal filtering program published in [11].

Since the statistics of the input data are close to
Gaussian we may use any one of the subroutines MLP8,
MLG8 or MLU8 and still have approximately the same
results of recovery. Of course we have to use the correct
definition of input data variance in different channels for
each from any of these subroutines. The results shown in
figures 4 and 5 were obtained using the MLU8 subroutine.

We have to pay some attention here to a problem which
occurs in the signal recovery process and is connected with
our spectrometer construction. Input data, as a rule, contain
a non-constant background resulting from scattering of the
analysed light in the spectrometer and from noise in the
PMT, the so-called ‘dark current’. If the input data contain
such a background the program DCONV gives a number
of false peaks. After subtracting the background from the
input data all false peaks vanish while at the same time the
positions of the true peaks do not change. In fact, it turns
out to be sufficient to use a constant background for the
experimental data shown in figure 4(a).

4. Results

The efficiency of the proposed method for spectral
analysis is demonstrated by applying the procedure to
the photoluminescence (PL) spectra of excitons bound
to the isoelectronic defectsB1

18 (1.143 18 eV principle
no-phonon line) at helium temperature. It is known
that such spectra are reasonably complicated and consist
of a number of narrow PL lines with FWHM∼ 30–
40 µeV with amplitudes varying over a wide range. The
measurements of such spectra permit the evaluation of both
the spectrometer quality and the quality of the program
for signal recovery, i.e. its efficiency in estimating spectral

Figure 3. (a) Residuals between the left- and right-hand
sides of equation (8) (divided by σ̂ ) as a function of point
number i for the input data presented in figure 4(a).
(b) Probability distribution function for these residuals: the
bold curve is the empirical PDF, the thin line is the
Gaussian probability integral F . The Y axis is nonlinearly
transformed by the formula F =

∫ y(F )
−∞ 1/(

√
2π) e−x2/2 dx .

resolution, in investigating the possibility of recovering
simultaneously the PL lines of weak and strong intensities,
etc.

The PL spectrum of excitons bound to the isoelectronic
hydrogen related defectsB1

18 in silicon at 4.2 K is shown
in figure 4. The samples investigated were produced
from a germanium-doped silicon (germanium concentration
3× 1017 cm−3) grown in a hydrogen atmosphere by the
floating-zone technique. The samples were irradiated with
a beam of thermal neutrons and then annealed for 30 min in
air at 445◦C. The samples were excited by a∼300 mW cw
argon laser.

Figure 4(a) shows the PL spectrum recorded by our
spectrometer in a mode where the instrumental function,
consisting of five narrow peaks (shown in figure 2(c)),
corresponds to a monochromator slit width of 0.4 mm.
Figure 4(b) shows the PL spectrum which was restored from
the spectrum shown in figure 4(a) by the program DCONV.
Figure 4(c) shows the same PL spectrum of excitons
bound to the centresB1

18 recorded by a BOMEM DA8

868



Comb-like functions in spectroscopy

Figure 4. No-phonon PL spectra of excitons bound to the
isoelectronic hydrogen-related defects in silicon recorded at
4.2 K. The zero mark on the X axis corresponds to the
position of the principal line at 1.143 18 eV. (a) Spectrum
recorded with the instrumental function of the spectrometer
shown in figure 2(c) (the slit width of the monochromator is
0.4 mm). (b) Spectrum obtained from the spectrum shown
in figure 3(a) by applying program DCONV. (c) Spectrum
recorded by a BOMEM DA8 Fourier transform
spectrometer with resolution 40 µeV (0.32 cm−1). The
asterisks mark the main PL line of the excitons bound to
the isoelectronic hydrogen-related defects. The main peak
(peak 3) in (b) and (c) is scaled down by a factor of three
compared to peaks 1, 2, *, 4, 5, 6, and 7.

Fourier transform spectrometer with resolution of 40µeV
(0.32 cm−1) [12].

The full width of the recovered PL spectrum in
figure 4(b) equals about 6 cm−1—20% more than
distance between the different orders in a Fabry–Pérot
interferometer. There is no significant intensity peak of this
spectrum which lies outside this range in figure 4(b) and
there appear to be weak signals in the Fourier transform
(FT) spectrum shown in figure 4(c). This significant
difference between these spectra results from the different
methods of the signal recovery: we use the nonlinear
procedure based on the MLM, which recovers only non-
negative signals, whereas FT spectroscopy usually uses the
linear procedure based on fast Fourier transform of input
data.

It should be noted that FT spectroscopy combined with
the nonlinear maximum entropy method of signal recovery
[13] can in principle give results similar to ours shown in
figure 4(b), however it is not the subject of this paper.

Using equation (3) the resolution of the spectrometer
was determined from the instrumental function and turned
out to be1 = 34 µeV. Since a signal-to-noise ratio in
this case is about 30 dB it follows from equation (6)
that we can resolve some details in the reconstructed
spectrum up to 11µeV. The width of the central peak

Figure 5. Spectral density of the PL intensity restored by
DCONV (broken curve) and estimation of its accuracy
(on the 1σ level) obtained by the Monte Carlo method
(full curve). The main peak (peak 3) is scaled down by a
factor of three compared to peaks 1, 2, *, 4, 5, 6, and 7
and its position on the X axis corresponds to a principal
line energy of 1.143 18 eV.

(peak 3) in figure 4(b) is 30µeV. From measurements on
a spectrometer with a higher resolution we determined that
this is the real width of this line. So it can be easily seen
that the procedure of restoration improves the resolution
of our spectrometer substantially because the width of the
central peak before numerical treatment was 40µeV.

We can see from this figure the excellent agreement
between the spectra recorded directly by a Fourier transform
spectrometer with high resolution and those obtained from
the input data (given in figure 4(a)) by the program
DCONV. From comparison of the spectra presented in
figures 4(b) and 4(c), it follows that the proposed method
successfully restores the spectrum of analysed light and
permits investigation of spectra that contain both strong
and weak lines simultaneously. It should be noted that
the spectra shown in figure 4(b) and 4(c) are strongly
distorted if they are recorded by a well known technique,
i.e. using only one order of a Fabry–Pérot interferometer
when the monochromator is used as a passive filter. In this
case lines 1, 2, 6, 7 could not be resolved because they
have approximately the same spectral positions. Moreover,
amplitude ratios are also distorted.

The signal-to-noise ratio for the input data shown in
figure 4(a) is about 30 dB. We cannot define the signal-
to-noise ratio for the output result of recovery by our
method shown in figure 4(b), because the intensity values
at different points are strongly correlated. In order to
evaluate the accuracy of the spectrum restoration we used
a Monte Carlo simulation. The estimation of probable
accuracy (on the level of 1σ ) of the recovered intensity
after 50 Monte Carlo trials is shown in figure 5 by the full
curve. The broken curve in figure 5 shows distributions
of the PL intensity restored by DCONV. The accuracy is
about 10% of the values of the restored signal at each
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experimental point. This value is about half that of the
level of fluctuations of the FT recovered data. So we have
proved experimentally that our method gives the correct
result of recovery, which is free of the impact of aliasing.

5. Conclusions

The use of a spectrometer with a complicated instrumental
function permits the effective solution of problems in high-
resolution spectroscopy. In our view it is especially helpful
to use instrumental functions consisting of many narrow
peaks which do not smooth out the analysed spectrum.

We have demonstrated that the use of a scanning
Fabry–Ṕerot interferometer synchronized with a scanning
grating monochromator extends the useful working spectral
range of the interferometer considerably and improves its
spectral resolution and signal-to-noise ratio. It should
be noted that the procedure described above is possible
only in conjunction with efficient algorithms for signal
reconstruction.
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