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APPLICATIONS OF INTEGRAL EQUATIONS OF THE FIRST KIND IN EXPERIMENT PHYSICS

E.L. KOSAREV

Institute for Physical Problems, USSR Academy of Sciences, Moscow, 117334 USSR

Applications to plasma diagnostics, physical electronics, nuclear physics, star cluster problem and super-resolution pro-
cessing improvements in optical imaginary are presented. The computer program implementation of inverse problems are

discussed as well.

1. Introduction

This report consists of two parts. The first part is
based on the author’s work and describes applications
of Abel’s integral equation to some problems in
experimental plasma physics, electronics and astron-
omy. The second one is based on some papers
published in J. Opt. Soc. Am., Nucl. Instr. and Meth.
and Proc. IEEE and is a review of a very prominent
method of one-dimensional function and two-dimen-
sional image restoration that has simultaneously many
different names: maximum likelihood, maximum
entropy, minimum-directioned discrepancy and
Bayesian deconvolution. But it is the same method,
and some applications and examples in experimental
nuclear physics and astronomy will be discussed in
the second part.

2. Applications of the Abel’s integral equation

To determine the radial distribution of the radia-
tion intensity of a cylindrical discharge in plasma
physics one should solve the first-kind integral
equation

R2—E2
JE)=2 | IVE* +n?) dn

0
R I(r)rdr
=2f 0<t¢<R. )
£

where J(£) is the measured function and I(r) is the

one to be determined, see fig. 1. By the change of
variables

x=R*-g, y=R'-r*,

F(x) = JW/R? - x), fy) = I/R* - y)

eq. (1) reduces to the standard Abel integral equation
for functions F and f
X
)d
Fo= [ L2 @
0o VX-Jy
Although this equation has a well-known exact

solution

1d 7F(y)dy

foo)==— , €))
mdx bf Vx — y

some difficulties arise in using the exact solution (3)

in practice. The point is that the function F(x) (or
J(£)) is known from measurements with only a finite
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Fig. 1. Geometry of eq. (1).
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(usually not good) precision and therefore large un-
certainties of the unknown function f(x) appear
which are bigger than those in F(x). This is a general
feature of so-called “incorrect” or “ill-posed” pro-
blems. Integral equations of the first kind with smooth
kernels lead to such problems.

But we do not have a smooth kernel K(x, y) =
1/a/x — y. This fact and use of the known statistics
of measurement noise give us an adequate method
for solving the problems (1) or (2). We call it the
“orthogonal expansion method” (OEM) and it may
be applied for various problems of restoration. The
idea is the following: we represent the unknown
function f(x) (but not the experimental function
F(x)!) as a sum of some suitable basis functions

fi)= 2 copol) -

a
As a result we have the expansion
Fx) =23 coval),

a

where Y, (x) = Ay, (x) and A is the integral operator

z(y)dy ‘
N

The problem now reduces to determining the coeffi-
cients ¢, from measurements. It is convenient for this
purpose to introduce a new orthogonal basis {e, } :

(ea» ep) = 8ap (round brackets mean the scalar product),
which is linearly connected with the basis {{/,,}

Az(x) =fx
0

e(x) = ?uaﬁwﬁ(x) >

and the matrix ||uygll is lower triangular: uyg = 0 for
B> a. If we find the expansion

F(x)= 2 Sa€a(x)

[+3
then we shall know the coefficients
Cq = Zﬁ> uﬁasﬁ .

The coefficients s, we find by the recurrence formula

a—1

Sa = (F— g sgeg, ea)

rather than the standard one s, = (F, ey) .

This is one of the small computing tricks that
provide the high performance of the method.

Now we will show how we use information
about the statistics of measurement noise to deter-
mine the number of terms in each of the above sums.
The quantity

N M 2
2= 12 [F(xi) - aZ:)() saea(xi)} [0*[F(x)))

has a chi-squared distribution with N — M — 1 degrees
of freedom. In this formula x; (i = 1, 2, ..., N) means
the experimental points at which the measurements
were made, and 02[F(x;)] is the variance of measure-
ment noise (measurement errors) at the points x;.
According to the Pearson criterion the number of
terms M + 1 should be increased if

X2>X.12V—M—1(P) >

where P is the significance level of the criterion. We
usually adopt P = 5%. The Fischer criterion may be
applied instead of the Pearson criterion if 2[F(x;)]
is unknown and in this case only the estimate
82[F(x;)] is used. Using only a finite number of
terms in each of the above sums is an extremely im-
portant feature of the orthogonal-expansion method.
This is the end of our brief description of the OEM.
The basis functions ¢, (x) =x% (=0, 1,2, ...)
were chosen by the author in ref. [1]. This basis cor-
responds to a polynomial approximation of the un-
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Fig. 2. Test example for eq. (1); the points are input data;
1 — approximations of input data, 2 — uncertainties of solu-
tion I(x), 3 — the solution I(x).
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known function f(x). The test example is shown in
fig. 2. As is seen in this figure the method is usable
even for large measurement noise of the input data.

In ref. [2] it was shown how eq. (1) should be applied
in plasma diagnostics with strong refraction.

The next example deals with physical electronics
[3]. For the study of electron emission from catho-
des in the alternating high-frequency electric field
of the electron accelerator-microtron one requires
to solve the integral equation

w2
JE) =1 [ 1Esing)de, @)
m 0

where J(E) is the measured function, and /(E) is the
one to be determined. This equation is known as
the Schlomilch integral equation and by a change
of variables it may be reduced to the Abel integral
equation. But we may apply the OEM for this equa-
tion once again. The basis functions may be ¢, = E¢
(@=0,1,2,..)too. The input and output data of
eq. (4) for a LaBg cathode are shown in figs. 3 and 4.
In astronomy there is an interesting problem of
determining the inner structure of globular star
clusters. Mathematically this reduces to an integral
equation that is absolutely identical to eq. (1), but
the meanings of functions J and I differ from those
in the plasma-physics problem. In astronomy I(r) is
the three-dimensional density of star numbers per
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Fig. 3. Input data J(E) for eq. (4), LaBg cathode, 2.5 X 2.5
mm?;1 — T = 1600°C, 2 — 1650°C, 3 — 1680°C, 4 — 1720°C.
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Fig. 4. Output data I(E) for eq. (4) 1 to 4 — the same as
fig. 3.

unit volume, and J(R) is the surface density of star
numbers per unit of sky area. If the star cluster does
not resolve into separate stars and we can observe
from earth only the integral star luminosity then the
solution of the astronomical problem is totally
identical to that in plasma physics.

The case, when we can observe from the earth two
sky coordinates of each star in the cluster, is more
interesting but more difficult for solution. For
example, fig. 5 shows the cluster of flare stars in the
Pleiades in projection on the sky surface at radius
126 ps [4]. Before beginning the known procedure
of solution by OEM we should determine the surface
density J(R) from coordinate data. It is wonderful that
OEM is applicable to this problem once again!

On the assumption that the cluster has spherical
symmetry it is required to reconstruct the one-dimen-
sional probability density p(x) from observational
data x, x5, ..., xy. This is the classical problem of
mathematical statistics. By OEM we look for an
approximation to the probability density

Pe)= 2 Capal)
a
where {i,(x)} is a suitable orthogonal basis

(‘pou ‘pﬁ) =f¢a(x) Saﬁ(x) dx = 8046 .
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Fig. 5. Cluster of flare stars in the Pleiades. Small points are
flare stars, small circles are five of the brightest Pleiades stars.
Scale is 1 ps per division.

If the probability density p(x) were known we
should have the result

ca =@, soa)=fp(x)<pa(x)dx.

But p(x) is unknown and it seems that we have a
vicious circle. However, we have a good idea. Since
the p(x) is a probability density the last formula

is the expression for the mean of ¢, (x)

[p) palx) dx = 7

and we use for the mean of ¢, (x) the arithmetical
mean estimation

N
- 12 .
o=y 21 0alx) =

where x4, X5, ..., Xy are independent observational

data, each of them having the same probability

density p(x). This is the crucial step in this reasoning!
The estimation of é, is unbiased:

and consistent:

D(Catp)
= fa6) — ) (85x) — €9px) dx > 0

at N >0,

As all the é, are sums of a large number of terms
N >> 1 with the same probability distributions, then,
according to the central limit theorem of probability
theory, all the estimates ¢, jointly have normal distri-
butions with means ¢, and covariance matrix
D(Calp).

We now have all the information not only to deter-
mine é,, but to choose the number of terms M + 1
in the approximation of p(x)

M
plx)~ Qéwa(x).

In this formula we use only those coefficients ¢,
which have

¢2ID(Eyep)> 1.

This condition provides the minimum of the mean-
squared approximation error: min Ry, where

Ru=[ [p(x) —éém(x)]z dx .

Instead of this criterion of choice M we may use the
standard Fisher criterion, or as N >> 1 the Pearson
criterion

égt/D(éaéa)> X}zv_l(p) > (»=0.05).

Usually the results are independent of the choice of
different criteria. '

Chenzov was the first to propose the OEM for the
probability-density estimation in 1962 [5]. This
method has a precision of order N~ 2 and in 1978
Boyd and Steele proved that there is no other density
estimator which has a better precision [6].

Now we come back to the star problem. At this
point we have the estimate of surface star density
J(R) and we can just use the above-described algo-
rithm for the solution of Abel’s equation. In fig. 6
the volume density of flare stars in the Pleiades
cluster computed by the author is shown. One can
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Fig. 6. The volume density of flare stars in the Pleiades.

see in this figure that the density has a maximum
in the centre of the cluster.

3. Maximum likelihood, minimum-directioned discrep-
ancy, Bayesian deconvolution and maximum-entropy
methods in restoration problems

Strictly speaking, there is always noise of various
origins and in restoration problems we have the
equations in the form

F&x) = [K@x, ) g0) dy + M), )

where the noise N(x) is known only statistically,
rather than in the form (1), (2) or (4).

In many applications, e.g. in experimental nuclear
physics or in photographic-image restoration, both
the detected function F(x) and the unknown one
g(y) are non-negative:

F(x)=0, g)=0.

In such cases we may consider that F(x) and g(x) are
probability functions with unit norm

[Fe) ax = [ gx) dx =1

and we use the powerful maximum-likelihood method
(MLM) for restoration of unknown object g(x) from
observations of F(x).

For simplicity we shall use the discrete form of

)

fi=zk>pikgk+nia i=1,2,.,my,

k=1,2,..,mj. )

In to-day’s experimental physics the measurements
are usually carried out with a multichannel analyser
and it will be convenient to consider N; = Nf; as the
independent observational data in the ith channel
and N = Z; N, as the total number of collected data.
In this language the probability P to receive from
observations the data set {V;}, which totally coin-
cides with the actual set, is equal to

p=y1lny Hpii,

where p; = £y, p;ix&x. According to the MLM philo-
sophy the maximization of P or In P gives the equa-
tion for determination of the unknown object {g}:

g}ecu}( (InP)= x{ngi)}c(const

+N Z') filn ? Pikgk) - ©)

This maximum always exists, as there is the known
information-theory inequality

2 fiin Lipuge = L filnf;

= 2 i in(piff) <0.

The second term Z; f; In f; is constant and therefore
does not depend on {g}.

Another way to get eq. (6) is to minimize the
directioned discrepancy (MDD) between two probab-
ility functions {f;} and {Zxp;x&x}, which is equal
to Z; f; In(fi/p;) (see ref. [7]). The sense of such
minimizing is to adjust as close as possible the mea-
sured function {f;} and the unknown one
{Zkpixgx}- Since Z; f; In(fi/p;) = —Z; f; In(@i/f;)
the MLM and MDD method are equivalent.

How to find the maximum in (6)? An approach
based on Bayes’s theorem has been proposed by
Tarasko [8] in 1969 for nuclear-physics applications
and by Richardson [9] in 1972 for image restoration.
As we consider the {f;} and {g;} are probability
functions Z;f; = 2, gx = 1,1, 20,8, =0, and {p;}
is a stochastic matrix Z;p;x =1, pjx =0 for all i and &,
then the approximate solution of eq. (5"), satisfying
the condition Zx gy = 1, g5 => 0 may be constructed
by the iterative procedure

g0l 2py fil 2ipygf® @)
1 ]
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Fig. 7. The photofission cross-section of 238y [10].
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where s is the iteration index. This procedure autom-
atically provides non-negativity: gz = 0. Tarasko has
proved that this iterative procedure gives the solution
of the MDD function Z;f; In(f;/p;) and therefore the
three methods: maximum likelihood, minimum-
directioned discrepancy and Bayesian deconvolution
are equivalent.

This method has been successfully used in the
“bremsstrahlung” experiment by Zhuchko and
Tsipenyuk [10]. In fig. 7 the results of their sub-
threshold photofission experiment of 238U are shown
in comparison with the independent data received by
direct experiments without unfolding. There is a
reasonable agreement between them. The paper of
Zhuchko [11] deals with important modifications
of the iterative procedure (7) to reduce computation
time and to improve its accuracy. A series of papers
on this method was published recently by Kennet et
al. [12].

The maximum-entropy method (MEM) in restora-
tion problems is very similar to MLM and MDD. It
starts from the papers of Jaynes [13] and Frieden
[14]. There is a new review of this method by Keating
et al. [15]. In this method the solution of eq. (5)
involves maximizing the sum of the unknown object

Restored By Max. Entropy
p=200, Med. Window Background

Fig. 8. Example of the maximum-entropy method. Left — the original photopicture, right — MEM restoration (result of Frieden

[15]).
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entropy H, = —Zy gx In gx and the noise entropy
H, = —Z;n; In n; under constraints (5'), so that the
results are consistent with the measured data. The
result of the maximization problem is

& = exp(—l - 2 7\iPik) » m=exp(—=1-1),
l
®

where A; are the Lagrange multipliers determined
from the constraint equations (5"). The solution of
system (8) and (5') may be done only by a computer,
e.g. by using the Newton—Raphson method.

A striking example from astronomical optics is
shown in fig. 8.

4. Conclusion

The orthogonal-expansion method (OEM) for the
solving of restoration problems applies only to linear
equations. The Bayesian deconvolution is very effec-
tive and very simple to realize on a computer, but is
again applicable only to linear equations. The maxi-
mum-likelihood and maximum-entropy methods are
suitable not only for linear but for non-linear equa-
tions as well although they are more expensive in
computer realization and time.
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