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A program package for nonnegative signal recovery from noisy experimental data distorted by the measuring device is
presented. Noise may have a Gaussian, binomial or Poissonian distribution at each experimental point. Three examples are
given which demonstrate the usage of the package: (a) reduction to an arbitrary instrumental function, which depends only
on the difference of its argument (this is the typical spectroscopic problem); (b) the expansion of an exponentially decaying
curve which has a continuous spectrum of decrements (this problem has applications in time dependent fluorescence,
nuclear physics etc.); and (c) the ultrasoft X-ray spectrum recovery from absorption measurements. These programs are
based on the maximum likelihood principle which allows the maximum value of resolution enhancement according to

Shannon’s information theory to be achieved.

1. Introduction

Because of the presence of noise and the finite
resolving power of the measuring device any mea-
surement of a physical quantity cannot provide us
with the required information. Both problems:
the noise suppression and reduction to the finite
resolution are closely connected and should be
solved simultaneously. In the simplest form the
problem of signal recovery may be presented as
an integral equation of the first kind

fbK(x, y) Go(y) dy =Fy(x), c<x<d, (D

where G(y) is the unknown function (the signal);
Fy(x) is the result of distortion (or transforma-
tion) by the measuring device which is described
in terms of an instrumental function K(x, y).
The distorted function F,(x) is then spoiled by
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noise, giving the real result of measurement, F(x).
So only the random function F(x) is available for
signal reconstruction. We assume that the values
of the random function F(x) are independent at
different x and they do not contain systematical
errors, i.e

IT(x_)=F0(x) (2)
and

AF(x;) AF(xj) =5(xi_xj) o'z(xi),” (3)
where

AF(x;) = F(x,) = Fo(x,)

represents the noise at point x;. The solid line

above variables in eqgs. (2) and (3) denotes the

ensemble averaging and o*(x,) represents the -
dispersion (variance) of the noise at the point x;.

The goal of the reconstruction procedure is to

determine the estimate G(y) of the nknown

function G(y) as accurate as possible from the

random function F(x).
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Problems of this kind which often are called
inverse problems are common in most fields of
experimental physics so there are several reviews
on the subject [1-5] and also papers containing
the description and source code of programs to
solve such problems [6-14].

We will only discuss in this paper the special
case of seeking nonnegative signals G,>0. Al-
though this case is not general, it has a broad
field of applications: e.g. all problems for energy
spectra recovery fall into this category. A special
monograph [6] is devoted to this case.

The principle feature of this work is that we
are using the maximum likelihood (ML) method
[15] to get the solution of eq. (1) with random
right-hand side. It has been shown in refs. [16,17]
that this method provides the ultimate resolution
enhancement as compared with any other non-
parametric methods.

The ML method requires not only knowledge
of the kernel K(x, y) of eq. (1) but also the
statistical description of the noise properties, i.e.
the noise distribution function. The kernel and
the noise distribution function may be obtained
either from some theoretical considerations or,
which is better, from especially designed direct
measurements. Since the reconstruction proce-
dure essentially depends on the statistical proper-
ties of the noise we shall discuss separately the
cases when the noise has a binomial (Poissonian)
distribution at each experimental point and when
the distribution function has the Gaussian form.

2. ML algorithm for the binomial (Poissonian)
distribution

In this article we consider only those cases
when the experimental data are given as a set of
values F(x,) at some points {x;}, i=1,2,...,n.
In this section we use the notations N, = F(x;) in
order to indicate that the experimental data are
positive integers. Introducing the set of indepen-
dent variables {y}, j=1,2,...,m at which we
would like to calculate the values G, = G(y;) of
the unknown function, we can use any numerical
quadrature formula to calculate the integral (1).

So we obtain a linear system of algebraic equa-

tions which is convenient for computer imple-
mentation,

m
Z})”G]:M’ i=1a27'-~>n7 (4)
j=1

where
Py=K(x; y)(¥j+17Y)-

Let us emphasize that the number of equa-
tions n in (4) may be greater or less than the
number of unknowns #. In most cases the system
(4) has no solution at all since its right-hand side
is a random vector and the system matrix P; is
practically degenerate.

In the case of binomial (Poissonian) distribu-
tion the right-hand side may acquire only nonneg-
ative integer values (usually they are the numbers
of pulses measured by some counter) which are
mutually independent and can be treated as hav-
ing a polynomial distribution.

Besides the requirement of nonnegativeness of
the experimental data {N}} there is another re-
quirement of nonnegativeness of the kernel P;,.
In this case the normalized quantities

m Gk

S;= Y Pix8k> 8p= >0 (5
k=1 Z Gl
=1
may be treated as probabilities and
Py
D= 7w — (6)
2 Py
j=1

as a stochastic matrix p,, >0, X7, p, =1
The joint probability of the measured set of
values {N;} is then given by

N! 7
P =——1I1s", (7
[Nt
i=1

where N = X7_,N,. According to the maximum
likelihood principle we call the vector {G,} which
brings the probability (7) to its maximum, the
solution to the system (4). The quantity (7) is
known to be the likelihood function.

The maximum of the likelihood function al-
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ways exists since it is continuous and the expres-
sion

"
=log & = constant + Y, N; log s,
-1

= constant + N )_ f; log s,, (8)
i=1

where f;=N,/N, has an upper bound since
Y. fi log s;— 2 f; log f;= Y f; log(s,/f;) <0,
i i i

%)
which follows from the inequality of the informa-
tion theory (see ref. [15], No. 1e.6.1).

To find the maximum of the likelihood func-
tion L in the space of unknown vectors {G,} we
use the same iterative procedure as described in
ref. [18], which is the modified version of the
procedure by M.Z. Tarasko [19]. In this method
there are no other assumptions about the form of
the unknown function G(x) than G(x)=0. No
information is required on the initial guess, so we
generally use the initial guess of the form G(x) =
constant.

This iterative procedure can be written in the
form

_ o| v fi
3¢ =2”| X pu| —m -1,
=t 2 g " (10)
j=1
gD =g 4 p3g.
Here ¢t =1, 2,..., is the iteration number, A is

the step length in the space of unknown vectors
{G,}. When h = 1 iterative formula-(10) coincides
with that by M.Z. Tarasko.

The expression in the square brackets coin-
cides with the kth component of the Lagrange
function gradient

m
d=L+A ng—l),
k=1
o n fi (11)
— =Nl py|w— 1Y,
gy i§1 g

Z Dii8;

and the Lagrange multiplier A is equal to A = —N.
Hence the stationarity of iterations (10) is equiva-
lent to the zero gradient condition on the Likeli-
hood function providing Y7_,g, =1. Thus we
have shown that the iterative process (10) leads to
the maximum of the likelihood function, i.e. it
brings the solution of eq. (1) when the experimen-
tal data have a polynomial distribution.

Note, that the formula (10) is essentially non-
linear with respect to the unknown vector {G,}.
The origin of the nonlinearity is the requirement
of nonnegativeness of the components of vector
{G,}). This requirement is provided by the factor
g, in the definition of the direction of search (10)
and by the appropriate choice of the value of the
step satisfying the condition

h< min (-g,/3g). (12)

{k; 5g, <0}

This nonlinearity of the ML method is its most
important property, and it is the key to the ulti-
mate resolution achievement as. compared with
any linear methods of signal recovery. It is shown
in refs. [16,17] that this improvement of resolu-
tion by using (10) (or (27) for Gaussian noise, see
below) reaches the theoretical limit derived from
Shannon’s theorem.

The length of the step A is defined from the
1D maximization of the likelihood function which
is quadratically extrapolated along the direction

dL

of search

d’L
Pon =~ / aw (13)
The values of derivatives necessary for extrapola-
tion are obtained from the accurate relations

h=0

dL n by |

NY ~—5—>0 (14)
dh h=0 k=1 8k
and
d2L n fz( s"))
— 15
dh? ln-o §1 ((t)) <0, (15)
where

m

85V =3 py dg(". (16)

k=1
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The value of the step obtained from (12) and
(13) is of the order of 103-10*, which provides a
much faster convergence rate compared to the
original procedure by M.Z. Tarasko.

The norm of the vector || g, |l =X, g, is con-
served automatically during iterations at any value
of the step & which directly follows from: (10).
The finite accuracy of computer calculations leads
to unstable behavior of the algorithm so the sta-
bility is maintained artificially by additional nor-
malizing of the vector {g{"} at each iteration.

The iterations should be continued until the
value

(BN)

- ¥

i=1 i

(17)

where 3N, = N(s; —f;) reaches a value less than
x2_(P)), where P, is the level of the x? crite-
rion.

In this case the deviation {3 N;} should corre-
spond to the experimental accuracy (3). This is an
important principle in the solution of inverse
problems.

In real physical applications it is necessary to
know the accuracy of the solution. We use the
method of statistical simulation where the recon-
struction process is repeated several times for M
different sets of random experimental data. This
simulation gives the solution in the form of the
mean value

myY; g? GYY(y) (18)

and the variance

1 M A —_—2
var[G(y)] = =1 gl [(GY(y) -G(M)]’,

(19)

which are calculated over M different sets of
reconstructed data GUNy), j=1,2,...,M. The
number of simulations M usually is-about 10-20.

3. ML algorithm for the Gaussian distribution

In the case of Gaussian distribution of noise
the likelihood function may be written as

+ constant, (20)

where the values of D, are equal to the noise

dispersions at the ith experiment point
D,=c?, i=1,2,...,n, (21)

and the values of S, are defined by the formula
S, = Z PG, i=1,2,...,n. (22)
Let us denote the sum of G, by G

m
G= ) G, (23)
k=1
so the likelihood function may be defined in the
extended (n + 1)-dimensional space {g,}, G. The
extremum conditions in this space are as follows:

L oy it o k=12
— = =0, k=1,2,....m
08 i=1 D, *
(24)
and
oL n F—S,
—=G'Y ——8§,=0. 25
3G E D, (25)
From (25) one may obtain
Z(Esi)/Dt
G = t=ln )
Y. s7/D;
i=1
where s, = Z 8> 5;=8,/G. (26)
k=1

So for any given vector {g,} there is only one
value of G maximizing the likelihood function.
The maximum of the function L will be sought
for the case of Gaussian noise by means of an
iterative procedure which is similar to that for
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Poissonian noise. The direction of search 8g{” is
defined by

g<t+1> = g(t) +h gg(t)’
Fi~ GZ 89

l\’l?

where 8g{0 =g{ (27)

D.

4

The calculation of the value of G by (26) on
each iteration keeps the norm of the vector {g,}
constant throughout the iteration process since

( )y Pkg;(!))

i Sl
=Y 5 =0, (28)

which follows from (25). An additional normaliza-
tion is required at each iteration step in order to
increase the stability against computational
round-off errors.

The value of the optimal step % in the direc-
tion of search {8g,} is defined from the equation

%L(G(h), {g,+h 6gk}) =0, (29)

where

f (Fis))/Dy+h Y. (E; 8s,) /D,

G(h) =—— —  (30)
Y (s;+h 5s,)°/D,

and
3s; = Z e 08+ (31)

For the sake of simplicity we may introduce the
scalar product notations

n n F, 3s;
FS= Z I l, 6= Z 4 i ,
i=1 i i-1 Di
nospo nos; 3s;
Ss=Y =, S5=1Y , (32)
i-1 Ui i-1 D
ds?

and rewrite (30) in the form

Fs+h Fd
Ss+2h S8+ h? D3’

G(h) = (33)

and an expression for the optimal value of the
step
F3—-G-8%
 G-D5—F5-55/Ss "

(34)

The number of scalar products used in the
algorithm may be decreased by replacing (34)
with the equivalent expression

A
- . (35
G| Db — (55)°/Ss| —A(S3) /(Ss) (35)
where
A= § 2
k=1 8k

Since the change in the likelihood function
after one iteration step

“ (agk)z

k=1 8k

L(k) —L(0) = 1G(h) h=0  (36)

is always nonnegative and proportional to the
length squared of the likelihood function gradi-
ent, the iterational process (27) with the step 4
defined by (34) and subject to (12) converges to
the maximum of the likelihood function (20).

The iteration formula (27) and also (10) in the
case of Poissonian noise is essentially nonlinear
firstly because the unknown vector {g,} is used
here as a factor in (27) and secondly through the
dependence of S, on g,. The important thing,
however, is the existence of nonlinearity in the
ML algorithm which provides superresolution
compared with the linear methods.

The iteration procedure (27) gives the solution
to the reconstruction problem in the case of a
Gaussian noise distribution for any instrumental
function which is not restricted by the require-
ment of nonnegativeness which is essential in the
case of polynomial distribution.
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4. The convolution integral equation

The superresolution achievement may be illus-
trated by the problem of spectrum reduction to
the instrumental function of the measuring de-
vice, when this function depends only on the
difference of its arguments,

K(x,y)=K(x-y). (37

The integral equation (1) becomes the convolu-
tion integral

['K(x=y) Go(v) dy =Fy(x), c<x=<d,
(38)

This problem has a lot of applications especially
in spectroscopy. There are two special mono-
graphs [6,7] and computer source code [6-8,11-
14] concerning this problem. None of those pro-
grams is able to achieve the superresolution avail-
able with the program described below.

In the case of an instrumental function de-
pending only on the difference of its arguments
(37) all the sums of the form

m
siﬁ Zpijxj’ l=1, 2,...,”, (39)
Jj=1

yj= Zpijfia j=1725--~’m7 (40)
i=1

in the iterative formulae (10) or (27) are replaced

by the discrete convolutions

m
s;= 3, p;yX;, where j'=i—j+1 (mod m),
j=1
(41)

n
y;= Y. pu;fi» wherei’=i+j—1 (mod n),
i=1

(42)

and the latter in turn are calculated via FFT
routines. To perform this replacement one should
pad the vectors involved in (39) and (40) by
additional zeroes. The matrix representing the
instrumental function contains n +m — 1 distin-
guished values so the convolution should have the
length of n +m — 1.

In the cases when the right-hand side data
become zeros at the ends of the interval (c, d),
the convolutions may have a reduced length.

To prove the resolution, corresponding to the
spatial frequencies which are absent in the exper-
imental data, i.e. the superresolution not avail-
able for any of the linear methods of signal re-
construction, we present examples of the recon-
struction for two types of instrumental functions:
Gaussian k(s) = exp(—s?) which has an infinite
Fourier spectrum and k,(s) = ((sin s)/s)* with a
finite Fourier spectrum.

In this formula we use the dimensionless pa-
rameter s ={(x —y)/D, where the parameter D,
defining the width of the instrumental function, is
chosen so that the corresponding instrumental
functions become zero at the ends of the interval
(a, b). In this case eq. (38) may be treated as
having infinite integration limits. All the func-
tions involved in the computations are given at
the discrete mesh x;,=i for i=1,2,...,n and
the integral is replaced by a finite sum of the
form (39). The total number of points is equal to
n=>512.

Following the papers [16,17] we choose the
true solution Gy(y) as a sum of two or three
narrow lines with Gaussian profile

M
Go(y) = X A exp(—uk)z, M=2or3,
k=1

where u, =(y—y,)/D;, D;=D/40 and then
calculate the integral (38). Next we add the noise
N(x,) with Gaussian distribution and dispersion
o? to the value of integral Fy(x,) at each point
X;.
The value of dispersion ¢? is defined by the
ratio of signal energy P,= [* Fg(x)dx to the
energy of noise P, = no? using the formula
, 1 P
AT

where the variable dB is equal to the signal-to-
noise ratio expressed in decibels dB = 10
log(P,/P,).

The input data for the ML algorithm are the
values F(x;)=Fy(x,)+N(x,) for i=1,2,...,n,
the value of ¢? and the instrumental function
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o 1 i -
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Fig. 1. Example of a three lines reconstruction by the Dconv
program for a Gaussian instrumental function with width
D =60 and number of data ponts N=1512. 1 — input data
with the signal-to-noise ratio 30 dB; 2 ~ instrumental func-
tion; 3 — result of recovery after 450 iterations; 4 — convolu-
tion of recovery result 3 with the instrumental function 2. The
obtained y?test value x2/N=0.934. Arrows A, B and C
indicate the true locations of the recovered lines. The Y-axis
scale is linear, but for clarity curves 1 and 4 been shifted

upwards vertically.

K(x —y). No more information is necessary for
the algorithm to work.

- Figure 1 shows the result of three lines recon-
struction with the amplitude ratio 1.5:1:1.5 for a
Gaussian instrumental function with the width
D = 60 and signal-to-noise ratio 30 dB. It may be
seen from this figure that all the lines are well
resolved with correct positions and amplitude ra-
tio. The qualitative characteristics of correspond-
ing deviations are given in table 1.

Note, that no information about the linear
structure of the unknown signal is supplied to the
algorithm. The program is looking for the func-

~tion G(y) or, which is more correct, for the

Table 1
The actual deviation of line positions and the area under each
of three peaks in the example presented at fig. 1.

Relative deviation
of the reconstruction (%)

Position -0.41 —1.74 —0.27
Area under the peak —341 -7.55 +8.44
Number of line 1 2 3

1.2 +4.2
(a) 3
,lf
8.8 F ol
2
0.4 |
,(‘
il o

0 128 256 384 512

L i

0 .-y 1
0 10 20 30 40

Fig. 2. Restoration of two lines, convolved with instrumental -

function ((sin x)/x)? for D = 45 and data points N = 512. (a)

Original lines — 1; instrumental function - 2; input data with

SNR = 22.5 dB - 3; the result of restoration — 4. (b) Fourier

spectra in linear scale: original lines — 1; input data — 3; result

of restoration — 4. The obtained yZtest value y2/N=
0.96057.

vector {G,} with m components which corre-
sponds to the “experimental” data best of all.

If the approximate solution is found to be like
that presented in fig. 1, it is meaningful to start a
parametric algorithm to find the positions and
amplitudes of the three lines. In this case the
accuracy of the estimation of these 6 parameters
(or 5 if the normalized values are searched) may
be much better than Shannon’s limit (see refs.
[16,17D and will be limited only by the Cramer—
Rao inequality [15].

Figure 2 shows the result of the reconstruction
for the instrumental function ((sin s)/s)?, which
has a limited Fourier spectrum. The input data in
this example do not contain spatial frequencies
higher than the cutoff frequency

lw| >wy=2/D. (43)
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Nevertheless the data shown in this figure
demonstrate the ability of ML algorithm to re-
construct the absent frequencies. This feature is
inherent only to nonlinear algorithms and is prin-
cipally unavailable for any linear method since
the linear methods are capable only to modify the
harmonics which are present in experimental data
but not to create the absent ones.

The programs described in this section to solve
the convolution integral equations have been used
in refs. [16,17] along with the experimental study
of superresolution with respect to the signal-to-
noise ratio.

The results demonstrated in figs. 1 and 2 are
obtained using the iterative procedure (27) de-
signed for Gaussian noise and arbitrary instru-
mental function. Similar results are obtained us-
ing formula (10) for a positive instrumental func-
tion and bynomial or Poissonian noise.

5. Superresolution exponential analysis via the
maximum likelihood method

The exponential analysis problem is to recover
the spectral function g(A) from the function f(z),
which is the Laplace transform of the g(A),

f(t) =f:g(/\) exp(—At) dA. (44)

We always have the experimental data F(¢) to-
gether with the noise n(z),

F(t) =£(1) +n(1), (45)

so the input data is F(¢), and not only f(2).

Lancos [29] has pointed out the inherent diffi-
culties in the even more simple problem of expo-
nential analysis with a discrete numbers of expo-
nentials,

M
f(t)= X A; exp(—A;t), (46)
j=1

where decrements A;, amplitudes A; and the

numbers of exponents M are unknown. These

difficulties are even more serious for a continu-
ous spectrum of g(A).

The standard formula for the Laplace trans-
form inverse is:

g(/\)=ifc

271

¢+ oo

~f(t) e dt

(see, for example, Titchmarsh [30]), and it is not
applicable in our case since knowledge of f(¢) for
complex values of ¢ is required for this formula,
whereas f(¢) is known only for real positive val-
ues of ¢, rather than for complex values of ¢.

From the variety of different methods for the
Laplace transform inversion it is worth to note
the method of Pike et al. [31-34], which these
authors have applied for example to the light
scattering polydispersion analysis of molecular
diffusion.

In this method the right-hand side of eq. (44)
and the solution g(A) are expanded over the
eigenfunctions of the Laplace transform (44). This
method is proved to be effective and it can re-
solve in principle two or three exponents having a
moderate number of experimental data.

These authors have discovered that the accu-
racy of recovery of an unknown function g(A)
would be better if the experimental data points
t;, i=1,2,...,n were placed uniformly in the
logarithmic scale x =log ¢, rather than in the
original scale ¢. While this reasoning agrees with
common sense, the complicated procedure for
the generation of the eigenfunctions does not
explain the origin of the efficiency increase ob-
tained by using the logarithmic scale.

Another method that certainly should be kept
in mind is known in physics literature as Gardner’s
method after the first author of the paper [35] in
spite of the face that this method was earlier
described in Titchmarsh’s book [30]. There are
new publications [36—40] using Gardner’s method.

Here is a brief outline of this method. We start
with the change of variables

x=In¢, y=In(1/A)=—-InA4, (47)

which means the transformations to a logarithmic .
scale on both the ¢ axis and the A axis. One
obtains, in the new variables,

f(e) = [ g(e™) exp(—e*) e dy. (48)
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Multiplying both sides of (48) by e* we obtain
if (1) =e*f(e*)
=/°° g(e™) exp[—e* ™ + (x —y)] dy.
- (49

Equation (49) is obviously the convolution type of
integral equation for an unknown function g(e™)
with kernel (or apparatus function)

K(x—y)=exp[—e* ™+ (x—y)]. (50)

The convolution integral equation (49) is solved
in a standard way — using the Fourier transform
to both sides of the equation. As a result we have

F (1) =G(p) (). (51)

Here %, G and # are denoting the Fourier
transforms of the given and sought for functions

F(w) = [ e*fler) e dax,

G(r) = g(e™) e dy, (52)
and also the kernel

(w) = [ K(s) e** ds

=fw exp(—e*+s) e ds=I(1+ip).
(53)

I'(1 +iw) in this formula is the Euler gamma-
function of complex argument 1 + iu.
From (51) we have

»  F(u)
gle)=m [ ———
2"“' —o0 1-'(1 + II.L)
As the sought for function g(A) is really the

density distribution of different values A, so from
the second relation (47) we obtain

e dy.  (54)

g()t)dA=g(Y)dYI%‘=g(y)dyl)tl, (55)

and therefore, briefly, in conclusion

g(y)dy= g(/\—)t)d)t.

Gardner’s method is distinguished by its ele-
gance and it is mathematically rigorous if one
applied this method for a given function f(¢) with
no noise, and besides this function should be
known at the full real axis ¢ € [0, »).

But instead of that we only know the function
F(¢) together with the noise n(¢), and in a limited
range of ¢ € (¢, tn.y)- It follows from this that
there appear spurious high-frequency compo-
nents of the spectral function F(u), and the
integral (54) diverges in high frequencies. These
difficulties are not specific for Gardner’s method,
but they are always common for inverse problems
dealing with noisy experimental data. All variety
of methods for the solution of inverse problems is
divided according to the noise filtering methods
which are used. All the paper mentioned above
[31-40] use really different kinds of noise protec-
tion filters.

As one can understand from this brief outline,
the Gardner method is linear according to the
standard definition: the sum of two input inde-
pendent signals corresponds to the sum of two
output independent results of restoration. That is
the main reason why this method can resolve and
restore only those signal harmonics which are not
lost in the input noise. This is the origin of the
resolution limit for linear methods.

But the principal resolution limit for any non-
parametric restoration method (including of
course nonlinear ones) is determined by the
Shannon theorem [17] and this limit is obviously
higher in comparison with the only linear meth-
ods. The authors of this paper were influenced by
these consideration when they started testing the
ML method for exponential analysis problems.

It is very easy, in principle, to implement this
idea. We apply the Gardner transform (47) and
come to the convolution integral equation (49)
with the kernel function (50) instead of the
Laplace transform equation (44). The Gardner
apparatus function or PSF (50) corresponding to
this kernel is unsymmetric and its range is equal
to

A= " K*(s) ds/K*(0)=1e’=185,  (56)
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where
K(s)=exp(—e’+s).

After that the convolution integral equation is
solved by the ML method using the fast Fourier
transform described in section 4.

Test computations revealed, however, that the
convergence rate of the algorithm, based on iter-
ation formula (10) or (27), was not fast enough in
difficult cases: e.g. there are close values of
decrements A, or there is a small input interval of
available values ¢. The enhanced version of the
ML method algorithm is described below.

Because the direction of looking for the maxi-
mum of the likelihood function is computed in
both formulas (10) and (27) by multiplication of
the gradient vector by the nonnegative factors g,,
both of these algorithms can be denoted as “qua-
sigradient” ones.

In the enhanced version of the algorithm there
is a new way of finding the direction of looking
for the maximum over one iteration. This direc-
tion is the linear combination of the “quasigradi-
ent” vector and the search direction in the previ-
ous iteration.

‘The CPU time for one iteration is larger with
about 20-25% in the new enhanced algorithm in
comparison with the old one. But because of the
faster convergence of the new algorithm, the total
time, which is proportional to the total number of
iterations, is 2-3 decimal orders smaller. We call
the new enhanced algorithm a quasi-conjugate-
gradient one.

The example of using the ML recovery algo-

rithm for the well-known test of 6 exponents
recovery {37] is shown in fig. 3. In contrast to ref.
[37] we use input data having noise with a signal-
to-noise ratio of 60 dB, whereas in ref. [37] input
data without noise was used. The number of
input and output data point was equal to 256, and

Table 2

3

fox ¥
2b
2a
zer |
B
: A
2 .
ERl .
Tt /3\
_//
or )
T T T T
1 10 100 1000

Characteristic time, 7 (sec)

Fig. 3. Recovery of six exponential functions with unknown
decrements and amplitudes at a 60 dB signal-to-noise ratio.
N =256 input and output data points. 1 — the Gardner
instrumental function (see egs. (50) and (56)); 2a — input data
in semilogarithmic scale (see coordinate axes in inset); 2b —
same. input data after the Gardner transform eq. (47); 3 -
recovery result and original lines, indicated by arrows from
below. The number of iterations equals 1200 and y?/N =
0.885. g(A)/A is intensity on the Y-axis and 7 =1/A is time
on the X-axis. The true solution (indicated by arrows from
below) is expressed by the formula

f(t) =10 e—0.00Zt +45 e—0.009t +100 e —0-02¢ +225 e—0.045t
+1000 e ~0-2 42250 e 045,

the variable ¢ lay in the range 0.5-2000 s. It is
seen from this figure, that all 6 exponents are
well resolved. The actual restoration accuracy is
presented in table 2.

For the evaluation of the place of the ML
algorithm for exponential analysis among the
other algorithms, it should be noted, that the ML
algorithm (as well as the Gardner and Pike meth-
ods) are nonparametric methods and because of
that, these algorithms should always be used if
there is no specific information that the paramet-
ric model (46) is adequate for signal which is
being sought.

The actual recovery accuracy of the line positions and areas under peaks for the example shown in fig. 3.

Relative accuracy for recovering (%)

Position 0.33 0.06
Area under peaks 0.19 -2.19
Peak no. 1 2

0.51 0.91 -0.09
11.96 -7.13 —0.53
4 5 6
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We agree with the conclusion of the authors of
papers [35-40] that the two-stage recovery proce-
dure would probably be optimal, although the
nonparametric algorithm should be applied first.
If and only if it is found that the parametric
model (46) is adequate, the parametric algorithm
should be applied secondly.

From the three methods by Pike et al., Gard-
ner and ML, the first one has probably the least
resolution which is determined by the number of
basis function actually used, but it is quite effec-
tive for a moderate number of experimental data.
If is reasonable to apply the Gardner or ML
algorithms for a number of experimental data not
less than 100-200. The speed of the Gardner
algorithm (especially based on the FFT) is larger
than the speed of the ML method, but the resolu-
tion is better for the ML algorithm. It would be
interesting to compare the actual usefulness of
the three methods using the same experimental
data sets.

Finally, we shall now simply explain the con-
clusion of Pike et al. about the advantage of the
logarithmic uniform spacing. This is true because
in such a spacing the distribution of the sampling
is uniform over the PSF (50), but not condensed
in the right side of the PSF. It results in a better
resolution of the lines sought if they are also
uniformly distributed in the logarithmic scale.

6. High-resolution soft X-ray spectrum recon-
struction by MWPC attenuation measurements

It was shown in paper [18] that this problem is
reduced to the solution of the integral equation

‘ N(x) =£EI(E)[1 —eTHBN] gmB)x |,
(57)

In this equation x is the depth of an attenuation
layer from the entrance point up to coordinate x,
N(x) is the measured intensity as a function of
depth, I(E) is the unknown energy spectrum at
the entrance point of the attenuation material,
a(E) is the linear absorption coefficient as a
function of energy E, A is the size of one section

Table 3

The experimental data of the X-ray tube spectral measure-
ments by the MWPC filled with molecular hydrogen at room
temperature.

Cathode Number of pulses for 100 s

number - : -

in MWPC experiment A experiment B experiment C
1 753100 876334 850281
2 259949 243066 240589
3 96431 84524 85179
4 40552 38256 41309
5 19889 21050 24440
6 10674 12816 16796
7 6539 8218 11518
8 3055 2 . 5426 8337
9 2625 3406 5902

10 1764 - 4337

Parameters for experiments:

A: Anode-cathode voltage 410 volts, hydrogen pressure 20
atm,

B: 448 volts, 25 atm.

C: 470 volts, 25 atm.

@ This is probably an outlyer. This value was actually re-
placed by 4143 which was obtained by linear interpolation
of the data logarithms.

of the multiwire proportional counter (MWPC)
which is used for attenuation measurements. The
factor

w(E)=1—exp[—a(E)A] (58)

represents the registration efficiency, and this
factor is proportional to the probability of ab-
sorption of a photon having energy E. The inte-
gration in (57) is extended over the energy AE,
where W(E) > 0.

The integral equation (57) is the special case
of the general equation (1), and the experimental
data N(x) usually have the Poissonian distribu-
tion at every x. Because of that we can apply the
iteration procedure (10) which is described in
section 2.

Extensive numerical results for the testing of
the efficiency of the iteration procedure (10) have
been given in paper [18]. Table 3 shows the
original experimental data, which were used in
ref. [18] for experimental tests in X-ray tube
spectra measurements.

The upper bound of energy spectra, recovered
from the experimental data presented in table 3,
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is equal to the tube voltage, and the carbon line
Cx, having energy 275 eV appears in each mea-
surement. All these features, obtained with the
program Datten, are clearly seen in fig. 4.

7. On the fast Fourier transform programs

Among many present-day FFT programs for
N=2" n=1,2,3,... data points there should
be noted those ones, which are based on the
“gplit-radix” algorithm [20]. These programs
probably have a minimal total number of arith-
metic operations (additions and multiplications
together). One of the first programs of this kind,
based on the algorithm by L.E. Kaporin [21], was
compared in paper {10] with the IBM FFT pro-
gram [22] and the FFT program by R.C. Singl'fon
[23]. It was shown in ref. [10] that for 512 data
points the first program is about two times faster
than the second program and four times faster
than the third one.

Table 4 shows the FFT execution times (in
seconds) for 1024 real values with single precision
for programs by J.B. Martens [24], H.V. Sorensen
[25] and G. Cabras et al. [26] in comparison with
the program by LE. Kaporin and the new one
based on the algorithm of ref. [27]. This algorithm
also belongs to the “split-radix” class but it uses a
faster digit-reversal permutation algorithm than
the one in the papers by D.M. Evans [28].

It is seen from this table that our new FFT
program is the fastest one of all mentioned here.
As an important fact should also be noted that
our new program requires 2.5 times less size of
working array in comparison with the program by
I.E. Kaporin.

This size can be reduced to even more than
twice, for the costs of a speed decrease of 3-4%.
If the inner loop in the FFT is prepared using

<
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Fig. 4. The X-ray tube spectrum reconstruction. The insert

shows the input data of three independent experiments: 1 —

the tube voltage is 410 V; 2 — 448 V, 3 — 470 V. The strong

line is the carbon Cy_ emission line at 275 ¢V. The number

of photons in each of the three experiments can be seen in

table 3. The resolution of the Cy_ line is about 15 eV (5%)
(see paper [18]).

assen bty

V' Assembler language instead of Fortran, the speed

of the program with a small memory model can
be increased with 1.5 times in comparison with
the GFT4 program.

The computing times shown in the table 4
were measured on a_personal computer IBM

V' pS /2, model 50 equigéd with a 80287 coproces-

sor using the IBM Fortran/2 compiler with op-
tion I and Y2, working under the operation sys-
tem DOS 3.30. The operations for initialization
(that is computation of the sin and cos tables)
and normalization of the FFT transform results
are not included in all programs mentioned in
table 4.

These times can vary on different computers
and different compilers, but the main conclusion
is not changed: our new fast Fourier transform
program is the best one among the ones men-
tioned, due to its speed and small size of working
arrays.

Table 4

FFT computing time (in seconds) for 1024 real*4 values on an IBM PS /2 personal computer, equiped with 286 and 287 processors. v
Martens [24] Sorensen [25] Duhamel [20] Cabras [26] Kaporin {21] Gelfgat [27]

RCF2 RV1FFT SPLITDIT RFFT FFT87 GFT4

(real and unsc.)

0.76 0.52 0.49 0.53 0.52 0.46
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8. Conclusion

Different parts of the software for deconvolu-
tion RECOVERY have been used at the P.L.
Kapitza Institute for Physical Problems starting
from 1980, and this software naturally evolved all
the time. All programs of this software package
are based on the maximum likelihood principle.
This is a short outline of its history: use the
steepest ascent method for maximization of the
likelihood function instead of the quasigradient
one with the constant step length # for the Pois-
sonian experimental data; choose of the optimal
step length 2 by the parabolic extrapolation of
the likelihood function instead of the bisection
method used before; compute the convolution via
the fast Fourier transform; the generalization of
the steepest ascent method for experimental data
having the Gaussian distribution; use of the ML
method for the Gardner transformed experimen-
tal data in exponential analysis and use of the
quasi-conjugate gradient method for maximiza-
tion of the likelihood function.

The authors hope to continue this work and
will be grateful to users of the RECOVERY
software for possible comments and suggestions
and for information about its applications in dif-
ferent problems.
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Three subroutines intended for nonnegative signal recovery from noisy experimental data distorted by the measuring
device are presented. The use of these subroutines is illustrated by a test program.

PROGRAM SUMMARY

Title of programs: MLGS8, MLUS, MLP8 from the RECOV-
ERY package

Catalogue number: ACLJ
Program obtainable f}om: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this

issue)

Licensing prouvisions: Persons requesting the program must
sign the standard CPC nonprofit use licence.

Computer: IBM PS /2 mod.50

Operating system under which the program has been tested: PC
DOS 3.30

" Programming language used: IBM FORTRAN /2
Memory required to execute with typical data: 200 Kb
No. of bits in a word: 16

No. of lines in distributed programs, including test data, etc.:
4888

Correspondence to: E.L. Kosarev, P.L. Kapitza Institute for
Physical Problems, Moscow 117334, Russian Federation.

E-mail: kosarev@magnitmsk su.
kapctea.qas.tu

Separate documentation available: user’s manual of the RE-
COVERY software; no. of pages: 9

Keywords: ill-posed problems, maximum likelihood, steepest
descent

Nature of physical problem

The programs allow reconstruction of nonnegative signals
from noisy experimental data distorted by the measuring
device [1]. Noise may have a Gaussian, binomial or Poissonian
distribution at each experimental point. These programs may
be used for: (a) reduction to an arbitrary instrumental
function, which depends only on the difference of its argu-
ments (this is the typical spectroscopic problem); (b) the
expansion of an exponentially decaying curve which has a
continuous spectrum of decrements (this problem has applica-
tions in time-dependent fluorescence, nuclear physics etc.);
and (c) the ultrasoft X-ray spectrum recovery from absorption
measurements.

Method of solution

These programs are based on the maximum likelihood
principle and use an algorithm of steepest descent class to
find the maximum of the likelihood function.

Restrictions on the complexity of the problem

There are no principle restrictions on the usage of the
programs. The only practical restriction is posed by the
memory available on the computer.

0010-4655 /93 /$06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved
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Typical running time
It takes less than one minute for test examples mentioned in
this paper and some tens of minutes for the examples
presented in ref. [1].

Unusual features of the program

Programs do not finish the work automatically. They just
perform the required number of iterations. The users should
check the quality of the solution according to the specifica-
tions of their own problems.

LONG WRITE-UP

1. Program description

The subroutines presented in this paper are
intended to solve the linear problem which may
be written as a system of linear algebraic equa-
tions

M
Y A,G=F° i=1,...,N. (1)
k=1

providing G2 >0, k=1,..., M. This linear sys-
tem may represent a dicrete form of integral
equation of the first kind or any other linear
operator equation which ‘describes the process of
physical measurement. Here {G?} is the unknown
physical quantity; {F} is the result of the trans-
formation (or distortion) by the measuring device
with the instrumental (point spread) function A4 ;.
There is always a finite measurement accuracy
due to some sort of noise, so in practice one does
not obtain the values of {F"} but the values {F}}
spoiled by noise. And only random vector {F} is
available for problem solution. A solution is
searched on the basis of the maximum likelihood
principle which requires the knowledge of statisti-
cal properties of noise [1]. Here we assume that
the components of random vector {F;} corre-
sponding to different i are independent and are
described either by a Gaussian, multinomial or
Poissonian distribution function.

This paper presents three subroutines MLGS,
MLUS8 and MLPS8 handling different noise distri-
bution functions P:

Reference

[1] V.I. Gelfgat, E.L. Kosarev and E.R. Podolyak, Programs
for signal recovery from noisy data using the maximum
likelihood principle. I. General description, Comput. Phys.
Commun. 74 (1993), this issue.

(a) Subroutine MLGS processes Gaussian noise
in general form

2
1
P(Fi | Ff’) = constant X exp| — 3

F—F

g

fori=1,...,N, (2)

and o, denotes standard deviation of F, from F’;
(b) Subroutine MLLU8 expects Gaussian noise

with equal standard deviations at different points

i, i.e. g;= o = constant,

2

1{F-F
P(F;| F?) = constant X exp| — S\
o

(3

This case may of course be processed by the
MLGS routine but it will work slower than MLUS
due to unnecessary operations with constant val-
ues of o, and, moreover, the general routine
MLGS requires additional memory space to hold
the array of standard deviations.

(c) Subroutine MLP8 expects the multinomial
distribution function

(T
PUFYIEY) = 777 L1 w70 @

1

and it can be used also in the case of a Poissonian
distribution if the total sum of measured values
F, is much greater than 1, i.e. LF,;> 1.

These subroutines are intended to find the
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vector {G*} maximizing the likelihood function
P{G*}) providing

G¥>0, k=1,...,M. (5)

The form of likelihood function % depends on
the noise distribution function, so in case of
Gaussian distribution it is as follows,

?({G*})=EP(EIE*)

1 N (F—F*\*
= constant X exp ——2—2( ) ,
1 l

where

M

= Z AikGI:k’ (6)
k=1

and in the case of multinomial distribution,

N F*
P({G*}) = constant X exp ZF log ZF*

(7)

Other noise statistics may also be processed using
the same maximum likelihood technique which
requires only the redefinition of the likelihood
function and rewriting several related expressions
in the maximization algorithm.

2. Characteristics of the subroutines

The detailed description of the algorithm can
be found elsewhere [1] so here we present only
the main characteristics of the subroutines. The
secarch of the likelihood function maximum is
performed by the steepest ascent method which is
a sign inverted variant of steepest descent method.
The implementation contains the following dif-
ferences from the standard scheme:

e The vector of unknowns {G,} is normalized,
i.e. it is replaced by new variables Gsum and {g,}
defined by Gsum = X |G, and g, = G, /Gsum.
Maximizing of the likelihood function with re-
spect to Gsum is done analytically which results
in decrease of the dimension of the system and

provides a much better convergence rate as com-
pared to the unnormalized case.

e The search of the likelihood function maxi-
mum at each iteration is performed along the
direction of the so called “conditional” gradient.
The kth component of the “conditional” gradi-
ent is obtained by multiplication of the corre-
sponding component of the gradient by a nonneg-
ative factor g,. This modification of search direc-
tion along with appropriate choice of step length
(see below) provides the fulfillment of constraints
(5). The “conditional” gradient can be thought of
as a result of projection of the gradient to keep
the vector of unknowns in the first octant of the
corresponding space.

e The value of the step in the search direction
is calculated from 1D maximization of the likeli-
hood function along the “conditional” gradient.
The value of the step is constrained to fulfill eq.
(5). This 1D maximization is done analytically
rather than numerically. Since most of the com-
putational time is spent to solve the direct prob-
lem (1), i.e. to perform matrice-by-vector multi-
plication, it is necessary to reduce the number of
such multiplications. Analytical calculation of the
step implemented in subroutines requires only
one additional matrice-by-vector multiplication to
find an optimal value.

All these changes to standard steepest ascent
method concern only accounting for constraints
(5) and they are aimed at improvement of the
convergence rate.

3. Input parameters

The types of all input and output parameters
correspond to IBM PC clone architecture, i.e. all
REAL variables and vectors are the REAL*8
ones since the difference in REAL#8 and
REAL =4 arithmetic performance is negligible but
the convergence rate of the algorithm is much
better using the higher computation accuracy. All
INTEGER variables are of type INTEGER 2,
because a typical RAM capacity will hardly allow
large system dimensions requiring INTEGER *4
range.

The notations of arguments in the subroutine
slightly differ from those used in formulae (1)-(5)
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and paper [1]. It is caused by the case insensitivity
of the FORTRAN language which makes no dif-
ference between lower and upper case symbols.

The calling sequence is very similar for all
three routines so we present here the description
of parameters for MLG8 and emphasize the dif-
ferences in calling of other subroutines:

call MLG8 (SUBR8,NF,F P ,Disp,NG,DG,Limit,
Chi2,IFlag, WS,NWS)

Here SUBRS is the name of the user defined
external subroutine (see below) containing the
description of the problem to be solved, i.e. eq.
(1). NF is the number N of experimental data {F;}
which are passed in the REAL 8 array F. Disp is
the REAL %8 array of squared standard devia-
tions {g;*}. The representatjon of standard devia-
tions is the main difference in the calling se-
quence of the subroutines which are presented.
Subroutine MLUS uses not an array but a scalar
REAL=*8 value of o?=¢?= constant which is
passed in the same place Disp. Subroutine MLP8
does not use standard deviations at all so Disp is
excluded from the list of its parameters. The
subroutines also require the number M of un-
knowns, passed as the INTEGER =2 variable NG
and possibly initial guess {G;} of the solution
vector, which is the REAL#8 array DG with NG
elements. Each component of this initial guess
must be nonnegative. The INTEGER *2 parame-
ter IFlag controls the usage of the initial guess
{G}}: it is used only when IFlag = 0. If IFlag > 0,
then the initial guess is not required and the
program uses internal variables to continue the
maximization process. Limit is the number of
iterations to be performed. The program does not
allocate any fixed sized arrays so the user must
supply an additional REAL#8 array, WS, to be
used as working storage. Dimension NWS of this
working storage must not be less than (NF + NG).

We have already mentioned that the only dif-
ference between the MLG8 and MLUS routines
is that unnecessary operations with constant val-
ues of o, = o = constant have been removed. This
removing markedly speeds up the computation.
In the case of multinomial distribution of experi-
mental data there is another opportunity to im-
prove the subroutine performance due to the fact

that the value of Gsum is really fixed Gsum = LF,
and optimization with respect to Gsum is not
needed. But this improvement is at the cost of
normalization of some input and output arrays.
This redefinition is explained in ref. [1] and can
be easily traced in the example below.

4. Output parameters

The subroutines check all input parameters for
legality and if any of these checks fails then
subroutines immediately return to caller with the
INTEGER %2 parameter IFlag set to negative
error code, otherwise parameter IFlag remains
unchanged on exit. Possible error codes are sum-
marized in the following:

1Flag = —1 number of data points, NF <2,
1Flag = —2 number of unknowns, NG < 2,
IFlag = —3 working storage is too small, NWS <

(NF + NG),

IFlag = —4 illegal component, Disp(I) <0,

IFlag = —5 illegal component in vector of initial
guess, DG(K) < 0,

IFlag = —6 can not find nonnegative solution,
ie. Gsum < 0.

According to the different usage of parameter
Disp, which is stated in the previous section,
subroutines MLP8 never returns parameter 1Flag
= —4 and subroutine MLUS returns this value in
case of an illegal scalar value Disp.

The obtained solution is returned via the
REAL*8 array DG and corresponding approxi-
mation {F*} of the right-hand side via the
REAL*8 array P. The quality of the approxima-
tion can be estimated by the REAL * 8 value of

1 N (F—F*\*
Chi2 = — -
i Nz( )

i=1 o;

which can be tested using the x? criterion to
decide to continue or not the iteration process.

5. External subroutines

In the course of iterations it is necessary to

.solve a direct problem, i.e. to calculate the sum
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(1) for a given vector {G,}. It gives an opportunity
for the user to formulate the original linear prob-
lem in his own fashion. For example, matrice-by-
vector muliplication in eq. (1) may be replaced by
fast Fourier transform convolution in case of a
translation invariant instrumental function. The
user-defined implementation of the direct prob-
lem (1) should be done via subroutine SUBRS,
which must be declared EXTERNAL in the call-
ing program.
The calling sequence is as follows:

call SUBRS (NX,X,NY,Y,IDIR)

Input parameters of this subroutine NX,
X,NY,IDIR should remain unchanged on return:

NX number of input data,

X(NX) REAL %8 array to be multiplied by ma-
trix, :

NY number of output data,

IDIR IDIR =1, use original matrice Y=
Ten 1A Xy,
IDIR = —1, use transposed matrice Y,
= L4 X

Note, that when IDIR =1, the input array
represents vector {G} with M components and
SUBRS should geturn vector {F} with N compo-
nents. And, vige versa, when IDIR = —1, the
input array represents vector {F} or {F *} or their
linear combination with N components which
should be multiplied by transposed matrix A
producing a vector with M components. The sub-
routine SUBRS8 is never called with parameter
IDIR other than +1, so other values of IDIR
may be used for various user purposes, i.e. ma-
trice initialization etc. Note, that the matrix A;;
is not supplied as an actual parameter to any of
the subroutines. It should be either defined in
SUBRS as a fixed array or passed to this routine
via a COMMON block. The only output parame-
ter of this subroutine is the REAL*8 array Y
which is the result of multiplication.

6. Test run

Test examples presented in this paper are
aimed not to demonstrate the power of the maxi-

mum likelihood technique but rather to facilitate
implementation of presented subroutines in vari-
ous user programs. So we chose simple linear
problems with “known answer” which can be
easily reproduced and understood. The dimen-
sions of the system, N = 20 equations with M = 20
unknowns, are chosen to minimize the amount of
print out. A Lorentz matrix,

Ay =1/(1+ (i—k)*/a?),

is taken as an instrumental function. The param-
eter « describing the width of the Lorentz profile
is taken « = 4. The true solution of the system is
taken in the form

GY=0,k+7,13 and G2=G%=10000, (8)

This true soltion is kept in the array GO and
the current approximation of solution {G}} is
kept in the array G. The right-hand side {F?} is
calculated according to eq. (1) and then the noise
is added in a different way for each of the sub-
routines:

o the noisy right-hand side for the general sub-
routine MLGS is calculated with fixed relative
accuracy of 1%, i.e. o;=0.01 F?;

e the noisy right-hand side for subroutine MLUS8
is calculated with a constant absolute value of
g, = o =200,

e and the noise for subroutine MLPS8 is calcu-
lated according to multinomial - distribution
around mean values of {F}.

For the sake of simplicity the values of the
noisy right-hand side {F;} are precalculated and
saved in the DATA statement. The test program
prints out the results of the calculation of every
100th iteration and terminates after iteration
number 500. x? test is not performed and values
of Chi2 variables are only printed for reference as
well as iteration counter.

7. The RECOVERY software for deconvolution

The three main subroutines MLUS, MLGS
and MLP8 described just above are used as a
basis for a unique software deconvolution pack-
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age RECOVERY. Nowadays the package con-

sists of three main programs for:

e deconvolution, i.e. a spectral resolution en-
hancement,

e exponential analysis, i.e. a decay-time analysis,
and

e radiation absorption processing.

There are two versions of the programs for
deconvolution and for exponential analysis:
Dconv, Dconv2 and Dexpa, Dexpa2, respectively.
The first versions of them are designed for the
number of experimental data N equal to some
power of 2

N=2" m=2,3,....

The second ones are able to use any number of
experimental data. The program for radiation
absorption processing Datten also has the ability
to use any number of experimental data.

For the sake of efficiency the fast Fourier
transform subroutine GFt4 [1] is used for the
circle convolution calculations in the programs
Dconv, Dconv2 and Dexpa, Dexpa2. The logic
diagram of the RECOVERY software is pre-
sented in fig. 1. A more detailed description of
the input and output data format and instructions
how to use the RECOVERY software can be
found elsewhere [2].

There also are enhanced versions of the sub-
routines MLUS, MLGS8 and MLPS8 which use the
conjugate gradient method for maximization of

the likelihood function instead of the gradient
one [3]. The ready-to-use (executable) form of
this enhanced software for IBM compatible PC’s
is available from the second author (E.L.K.) on a
commercial basis. The only difference between
the ordinary and enhanced versions of these pro-
grams is the computation time and hence it is
essential for the PC’s but not for more powerful
computers. The full listings in source form of the
programs Dconv, Dconv2, Dexpa, Dexpa2, Dat-
ten ¥ and subroutines MLUS, MLGS, MLPS,
MATXS8, CNVprim, GFt4, RASF8, WRASFS8 and
GRAPHS are available from the CPC Program
Library.

8. Conclusions

The subroutines presented in this paper
demonstrate good efficiency in solving linear
problems with noisy right-hand side. The only
prior information about the solution is the non-
negativeness of its components. This prior knowl-
edge is not incorporated in the objective function
but it is used in the nonlinear projection operator
implemented in the steepest descent algorithm.
This scheme is especially effective when the solu-

* And also the test program CPC.TST, which was described
in section 6.

DCONYV, DEXPA, DATTEN Main oro
DCONV2 DEXPA?2 ain programs
¢!
[MLUSI [MLGS]| MLPS8 Main subroutines
o1 1l
CNVprim MATXS8 Convolution subroutines
¥
GFT4 Fourier Transform
subroutine
RASFS, GRAPHS Auxiliary subroutines
WRASF8 for reading and writing

data from/to ASCII files
and for plotting the
results

Fig. 1. Logical diagram of the RECOVERY package.
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tion vector consists of several narrow nonzero
structures separated by zero-valued components.
In such cases the nonnegativeness constraints
make the maximization of the likelihood function
a well-posed problem and the routines presented
in this paper can be efficiently used to solve it.
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TEST RUN OUTPUT

results of MLG8 routine

iter 100 200 300 400 500
01 .027 .000 .000 .000 .000
02 .0568 .000 .000 .000 .000
03 .683 .008 .000 .000 .000
04 18.783 1.1562 .113 .0156 .002
05 382.565 119.225 43.092 17 .569 7.849
06 2454 .740 2266.279 1974.039 1712.287 1493.888
07 3864.712 4924.718 5653.207 6209.409 6655.010
08 2125.138 2045.600 1928.277 1797 .774 1666.320
09 859.525 514.132 340.204 236.163 169.137
10 556.225 262.636 145.180 86.661 54.370
i1 827.526 483.596 313.040 213.032 149.816
12 2056.191 1952.3756 1817.426 1677 .295 16541.958
13 3812.047 4844 .549 B547.083 6080.726 6506.926
14 2502.201 2359.459 2111.188 1881.951 1686.643
15 437 .601 161.575 71.251 35.803 19.819
16 24.013 2.262 .371 .086 .025
17 .614 .012 .000 .000 .000
18 014 .000 .000 .000 .000
19 .000 .000 .000 .000 .000
20 .000 .000 .000 .000 .000
Chi2 5.643E+00 3.294E+00 2.474E+00  2.0B6E+00 1.802E+00
results of MLU8 routine
iter 100 200 300 400 500
01 .000 .000 .000 .000 .000
02 .000 .000 .000 . .000 .000
03 .002 .000 .000 .000 .000
04 .237 .000 .000 .000 .000
05 43.432 .217 .003 .000 .000
06 1886.436 659.733 274.287 169.702 147.643
o7 6204.331 8649.858 0422.517 9630.657 9670.910
08 1715.582 709.289 322.9567 219.548 203.512
09 171.9563 6.947 .642 .224 .217
10 . b3.492 .624 .022 .004 .003
11 161.385 5.667 .386 .078 .036
12 1662.636 625.446 236.886 117.961 - 72.706
13 6286.847 8743.3561 9512.78b6 9739.939 9819.327
14 1864.443 632.646 251.442 140.433 103.264
15 37.526 .186 .003 .000 .000
16 .148 .000 .000 .000 .000
17 .000 .000 .000 .000 .000
i8 .000 .000 .000 .000 .000
19 .000 .000 .000 .000 .000
20 .000 .000 .000 .000 .000
Chi2 1.951E+01 2.070E+00 7.952E-01 6.943E-01 6.847E-01
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results of MLP8 routine

iter 100 200 300 400 600
01 .000 .000 .000 .000 .000
02 .0056 .000 .000 .000 .000
03 .238 .000 .000 .000 .000
04 138.528 .462 .022 .000 .000
05 378.978 97 .669 28.107 8.985 3.140
06 2709.308 2458.622 2098.401 1786.858 1538.081
o7 4063.127 5230.988 6065.067 6705.949 7209.212
08 1897.131 1715.630 1506.199 1294.191 1096.948
09 6566.024 335.175 185.728 106.463 62.592
10 424.717 169.527 77.083 37.332 18.967
11 750.998 409.154 241.1568 148,237 94.448
12 2216.747 2137.504 1995.9756 1842.1568 1698.402
13 4180.226 5296.818 6051.810 6611.117 7038.891
14 2393.626 2071.019 1732.901 1459.564 1246.274
15 347.822 109.536 43.2038 20.345 11.121
16 17.264 1.367 .204 .047 .016
17 .488 .009 .000 .000 .000
18 .013 .000 .000 .000 .000
19 .000 .000 .000 .000 .000
20 .000 .000 .000 .000 .000
Chi2 3.436E+00 1.700E+00 1.158E+00  9.144E-01 7 .863E-01
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