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Abstract. It is shown there is an absolute limit for resolution enhancement in comparison
with the Rayleigh classic diffraction limit. The maximum value of superresolution which
can be obtained in principle is determined by noise and may be computed via the Shannon
theorem concerning the maximum information transmission speed through the connecting
channel having noise. A restoration algorithm based on the maximum likelihood method
which has Shannon’s supremum superresolution is described. Numerical tests of this
algorithm are presented and results of its application to a nuclear magnelic resonance
experiment are shown. The close connection of superresolution power and the uncertainty
principle is discussed. Superresolution depends logarithmicaily on the signal-to-noise ratio.

1. Introduction

No measurement of any physical quantity ever gives the direct and precise result of the
measured value owing to the ever-present measuring noise and also the finite resolution
of each measuring system. Both these problems, correction for finite resolution of
measuring system and decrease of noise effects, are closely connected and should be
considered simultaneously. If there is no noise the resolution can be increased infinitely
[1].

The problem of signal recovery (or inverse problem) in a simple case is reduced to
the solution of the linear integral equation of the first kind in the form

b
f Ko fo0)dy =Folx)  c<x<d (1

where f,(y) is the unknown function which should be determined from the measure-
ments, Fy(x) is the result of transformation of the function fy(y) by the measuring
system which is characterised by the function K(x, y), often called the apparatus func-
tion or point spread function (PSF). The result of measurements is the function F(x)
which equals the sum of Fy(x) and random noise N (x)

F(x) = Fy(x) + N (x). ' @

t A short version of this paper was presented as a report to the 8th International Maximum Entropy
Workshop, Cambridge, UK, 1-5 August 1988.

0266-5611/90/010055+22503.50 © 1990 IOP Publishing Ltd 55



56 E L Kosarev

The statistical characteristics of the noise N (x) (its distribution function) are considered
to be known.

The goal of the inverse problem is to recover with maximum accuracy the unknown
function fy(y) from the measurements of experimental data F(x).

The Rayleigh classic resolution limit does not use at all the solution of the integral
equation (1) and for the resolution it defines the effective width A of the point spread
function K(x, y), i.e. such value A which corresponds to the inequality

|K(x,y}/K(x,0)] <1 at [y| > A. (3)

This quality definition corresponds to the longstanding practice of distinguishing the
unknown functions f,(y) according to the difference between the measurement functions
F(x)—in optics the difference being the visually resolved one. Strictly speaking, such
a definition was only possible at the time of Rayleigh because there were no effective
-.algorithms for signal recovery.

’ After the development and documentation of such algorithms [2-14], some of
which [12-14] have a resolution better than the Rayleigh limit, it is important (i) to
choose from them the best method for signal recovery which has the best resolution
providing a given signal-to-noise ratio at input, and (ii) to find out if there is any
ultimate limit to the enhanced resolution of the distorted and noisy signals.

The existence of such a limit is very important from the theoretical point of view
because in such a case it is possible not only to compare the different algorithms
between themselves but also to compare all of them with the absolute limit of signal
recovery enhancement, and to establish a new unit for measuring the efficiency of the

different algorithms. In this paper it is shown that the existence of such a limit follows -

from the famous Shannon theorem [15] on the maximum information transmission
speed through the noisy information channel and because of that it is reasonable to
call this unit as 1 shannon and to measure the efficiency of any method for signal
restoration in parts (or %) of this limiting value.

The problem of the resolution limit is considered in papers [16-27] and is even
connected in papers [17,20] with the Shannon theorem, but all of these papers deal
only with signals which have a bounded spectrum support or with signals which can
be simply parametrised, ie. the analytical form is considered to be known and it is
necessary to find a small number of unknown coefficients. In this paper these limitations
are removed and the algorithm for general signal reconstruction with superresolution
properties is presented, both in numerical tests and in real data reconstruction for the
NMR experiment with a heavy fermion superconductor UBe,.

2. Shannon’s limit for superresolution enhancement.

The basic equation (1) coincides with that in the information theory for signal transmis-
sion through a noisy information channel. The point spread function K(x, y) simulates

the characteristics of the information channel. If the properties of the channel do not’

depend on the time, the corresponding point spread function K(x, y) depends only on
difference x — y

K(x,y) = K(x—y) 4)

and this function is time (or space) invariant.
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The proof of the Shannon theorem given by the author himself in {15] (see also
[28,29]) is based on the expansion of the right-hand side F(x) in the Kotelnikov series
and therefore this proof is correct only for the functions having a bounded spectrum
support. These functions are only a small part of the total function set which is really
used in practice. For example, such widely used apparatus functions as a Gaussian

profile

Ky =exp(=s®)  s=(x—y)/D (5)
or a Lorentzian profile

Ky=1/(1+5)  s=(x—y)/D (6)

are.not the bounded spectrum support functions. The parameter D in (5) and (6) is a

scaling factor of apparatus functions.
As a matter of fact, the analytical properties of the Kotelnikov (or sinc) basis

functions

_sinn(ZWx —)

=P a3, 7
hitx n(2Wx —i) =5 " @)

are not used at all in Shannon’s theorem proof. It is only important that there is a
finite number of samples

n=2wx ’ (8)
at finite observation interval
X =d-—c 9

W in formulae (7) and (8) is the frequency bandwidth of the function (7).

For unbounded spectrum support functions (such as (5) or (6) above) it is possible
to use the other basis functions instead of Kotelnikov’s functions. This method for
solution of the first-kind integral equation (1) is documented in [6], where it is called the
orthogonal expansion method (OEM), and in paper [30] it is shown that a reasonable
number m < n of basis functions should be taken in all expansion series in order to
obtain the minimal mean-squared error of the equation solution. '

In fact the assumption that the point spread function K(x, y) has a finite spectrum
support is not necessary for Shannon’s theorem to be correct. According to Kolmogorov
[31] it is sufficient for the dimension of signal space F(x) to be finite. This is the case
for almost all experimental data F(x), because the function F(x) is always measured
in a finite number of points. ‘

From this point we only consider the n-dimensional signal space

n

fo0) =Y 0 0) (@ 0p) =y (10)

a=1

where the basis functions {¢,(y)} have to be chosen according to the available physical
information on the solution fy(y) of inverse problem (1) rather than the analytical
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properties of integral operator (1). For the right-hand side Fy(x) of equation (1) we
have the expansion

n

Fyx) = Y capa(¥) (11)
a=1
where
b
P, (x) = f K(x,y)o,(y) dy. (12)

In order to find the coefficients ¢, we introduce according to [6] the new orthogonal
basis

1 - {ea} : (ea’ e[}) = 5«[} (13)

which is linearly connected with the basis {1,}

n

e (%) = Zuaﬂwﬂ(x). (14)
p=1

Round brackets in formulae (10) and (13) denote the scalar products.
The matrix |u,ll in (14) is the low triangle one

U =0 for f > a. - (15)

If we find the expansion

n

Fol0) = ) 5,8,(x) (16)

a={

then we find the unknown coefficients c,

Cy = Z UpySp- 1
p=1 S

We find always the coefficients s, by using the recurrent formula

a—t v
5, = (FO — z s,,eﬂ,e,,) : (18)

p=1
rather than the usually used standard formula
Sg = (FO’ ea) (181)

because recurrent formula (18) is more stable against truncation errors in comparison

with the above standard formula.
While expansion (18) reduces formally to the standard formula (18’), the equivalence

of both formulae is broken owing to the finite accuracy of computation. According
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to the author's analysis both formulae (18) and (18') are intrinstically unstable, which
means that a small inaccuracy of any origin increases exponentially as a function of a,
but the increments are different in both formulae.

For orthogonal polynomials the increments are 0.85 for (18) and L.1 for (18'), and
this difference is very remarkable: the accuracy of formula (18) is higher than that of
(18’) by 4-5 decimal places for & ~ (15 - 20) and real » 8 computation precision.

Since we have the signal and noise from the measurements only together (2) we

have only the estimates §, of coeflicients s,

a—1

5, = (F -3 s,,e,,,ea) (19)

B=1
and, of course, we have only the estimated solution

n

o) = ) &.0,00). / (20)

a=]

The very important point of OEM is to use the reasonable number m < n of members
in all series (10)-(20). This number m or in the more general case the optimal filter

coefficients {k,}

n

fo) =Y Ekoo ) @1

a=]

. ' -2
we can find from the need to have the minimal mean-squared error R,,, where

m m

b 2 n
—2 _ _ . _ 2 —
Rm—E[ f (Fo(x) Z;saea(x)> dx] _a;lsﬁz‘(sa P @)
or the minimal R, where

—R2=E[fab(1"0(x)—

The sign E in formulae (22) and (23) means averaging over different noise realisation
N (x). The minimisation of (22) gives the optimal value of mg, in such a form

n 2 -.
Z §akaea(x)) dx] . {23)

for a > mg, s2< (8, —s,)?=DG,) (24)

and the minimisation of (23) gives the optimal filter coefficients
2 "
s
[ S
*  s24DG,) (25)
which coincides with the well known Wiener’s filter coefficients. .
While formula (24) is also a well known result, the series can only be expanded
for eigenvalues that exceed the noise level, its generalisation, the Wiener filtering (25)
proves to be very eflicient for various applications [30].

a=] L
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We shall not deal here with more detailed specifications of OEM, referring readers
for this information to the papers [6,30] though we would like to mention only that
the optimal value m,, in (24) or effective frequency bandwidth of Wiener’s filter (25)
are both proportional to the resolution frequency and far from the resolution limit
resulting from the Shannon theorem. Now we are going to prove this theorem for the
signals having the unbounded spectrum support. ‘

So we have n orthonormal basis functions {e,} from (14) and for simplicity also
just n measuring points x;, i = 1,2,...,n. Let'us expand the right-hand side (2) of the

equation (1) upon these basis functions

n n

F() =Y 86,0 = ) (s, +n)e,(0). (26)

a=1 a=1

We only know from the measurements the sum s, -+ n,, but not each individual term
‘separately. Let P, denote the signal energy

P, = Z 52 27)

=1

and P, the noise energy

P, =) m =Y N(x)?=no’ (28)

where o? is the standard deviation of noise in each measuring point
N)N(x)) = 625, - (29)

We consider the noise to be stationary, ergodic and uncorrelated.
The energy of the received signal

n n
IFIP =Y G+ n)2 =P+ Py +2) s, = P+ P, (30)
: a=1

a=1

is equal to the sum of P, and P, because of m, =0 . The averaging in formulae
(28)-(30) is also taken over a different noise realisation. The important formula (30)
means that the noise vector having the coefficients {n,} and length /P, is almost surely
orthogonal to the transmitted signal vector having the coeflicients {s,} and length \/P—,
providing the signal space dimension n> 1 .

It follows from the equality

IF =) (s, +n.)’
a=1

that the value | F||2/o? has the non-central y>-distribution with n degrees of freedom
and non-centrality parameter equal to P,/o%. Using the formulae for the mean and
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variance of a non-central y2-distribution (Abramowitz and Stegun [32] formula 26.4.37)
we have the relative fluctuation

SIFI 1

IFIZ~ vn

and hence the reccived signal vector having the components {s, 4 n,} almost surely lies
near the surface on an n-dimensional sphere having radius /P + P,.
The total number M of distinct signals for P, < P, is less than

ar < WP FP) V, (/P4 P,) m).
Sn(\/P—n) Vn—l(\/I-);)

~ where S, (r) = k,r""" is the area of the n-dimensional sphere surface with radius r (k,
is the numerical coefficient) and ¥, (r) = k,r"/n is the volume of an n-dimensional ball

with radius r. v
The total number of information bits corresponding to this number M is

-0 for n — oo

B =log,M <™ ’2' Lelog,(1+ P,/P,) ~ Lnlog,(1 + P,/P,). (32)

Formula (32) proves the one part of Shannon’s theorem concerning the existence of an
absolute limit of transmitted information for the signals having unbounded spectrum

support.
This proof coincides completely with Shannon’s original proof in [15]). There is

only one exception: we use basis functions (14), which can be also determined for point
spread functions K(x,y) having an unbounded Fourier spectrum support. To reduce
formula (32) to the standard form for PSFs having a bounded spectrum support width
equal to W(cm™') let us determine space d,, between measuring points. According to
the Kotelnikov theorem this space d,, is

8,y =1/2W . (33)

and the total number of measuring points n, which is also the dimension of signal -
space, is given by

n=X/d, =2XW X=d-c (34)
From (32) and (34) we obtain the standard form of the Shannon formula
(B/X)(bits cm™") = W (cm™") log,(1 + P,/P,). (35)

The physical sense of the Shannon formula (35) is that the ultimate frequency B/X
(bits cm™!), which determines the resolution, can be in principle greater than W{cm™)
in the factor log,(1 + P,/P,) for optimal restoration algorithms.

Since this resolution is not only greater than the Rayleigh classic limit (3) but also
greater than the one given by OEM in (24) or (25), Shannon’s resolution limit can really
be called the superresolution limit. The Shannon theorem does not give us any definite
algorithm for how to obtain this ultimate resolution and therefore this theorem is only

an existence theorem.
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In this paper we shall not prove the other part of the Shannon theorem concerning
some theoretical possibility to reach the ultimate resolution by application of special
encoding and decoding procedures to the transmitted and received signals.

We have no problem with the signal encoding procedure because it is done au-
tomatically by integral operator transform (1), but the decoding procedure should
always be necessary and is called in our case the signal restoration algorithm. Instead
of proving the other part of the Shannon theorem we shall present here in detail
the restoration algorithm and results of its numerical tests which will show that this
algorithm actually reaches Shannon’s superresolution limit. According to the definition
in the introduction of this paper, the efficiency of this algorithm will equal 1 shannon.

IS Y
ZA..,

//A i=3 ,

[

7 )i

Figure 1. The basic functions {;(y) for B = 4.

y

The formula (35) gives an answer to the questions about the limit of resolution
for signal recovery. We cannot distinguish more than M signals providing the given
signal-to-noise ratio (SNR) P,/P, and correspondingly cannot have more than B of
information bits. Hence all the distinguished signals can be expanded over B different

basis functions
B

fo0) =) ala) (36)

a=1

which are presented in obvious graphic form in figure 1 for the case B = 4. The width
of each basis function {,(y) equals

¢=X/B = 1/[Wlog,(1 + P,/P,)]. 37)

It is seen from figure 2 that the resolution limit J for signal f, in the form of equidistant
lines, all having equal amplitudes, is equal to double the width ¢ of basis functions

8 =2e=2/[Wlog,(1+P,/P)] (38)
or
1/Ws = flogy(1+ Py/P,). (39)

To proceed to the generalisation of Shannon’s formula (35) for unbounded spectrum
support functions let us write it in dimensionless form

B/X
-;/V— = log,(1 + P,/P,). (40)



Shannon’s superresolution limit for signal recovery 63

On the right-hand side of this formula there are only the energies of signal P, and of
noise P,, which are both invariant to the choice of different basis functions. Geometri-
cally this means only the rotation of the coordinate system in multidimensional signal
space. The universal logarithmic law does not depend at all on the analytical form of
the point spread function. Only one parameter of the PSF is significant—the width of
its spectrum support W—and this appears only on the left-hand side of formula (40).

5

-

2e

Figure 2. The relation between the width ¢ of each basic function {,(y) and the resolution
limit 4. '

From the dimensional analysis we can use instead of factor 1/W the width of the
point spread function

A=C/W C = constant (41)

which is determined above in quality level. The numerical value of the constant C
depends on the definition of the width of the point spread function K(x,y). As seen
from the Shannon theorem proof, the energetics characteristics of signals are most
important, and therefore in this paper we shall determine the width A of the point

spread function as a range
e o]
A= K?*(x) dx (42)

providing the normalising condition
K@) =1. 43)

This definition is suitable for the PSFs having both bounded and unbounded
spectrum support width. Using this definition formula (39) for the resolution limit can
be rewritten in a form

A/é = LClog,(1 + P,/P,).

We find the numerical value of the constant C by calculating the frequency bound
width W and space width A for the two following PSFs having the bounded spectrum

support
. 2
K, = (__s';”) * : (44)

sins
()

and
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where s = (x — y)/D.

The first function is interesting because it is positive everywhere as well as the PSFs
(5) and (6); the second one coincides with the Kotelnikov basis function (7).

We have for the function K

2n 1 2.

and for the function K,

1 1 ,

A, ==nD W, = — Ay = ——. 47

4= 4= 21D Y “7

From these relations we receive the sought-for formulae for the limit of resolution in

terms of the ratio of the pPSF width A to the minimal space § between signals as a
“function of signal-to-noise ratio

A/8 = Llogy(1 + P,/P,) (48)
for the PSF K; and
A/8 = tlogy(1 + P,/P,) (49)

for the PSF K,. For reference purposes we cite the numerical values of width A for the
PSFs (5) and (6) {(Gaussian and Lerentzian profiles)

o

A = —’251) A, = gD. (50)
Before concluding let us emphasise that Shannon’s superresolution limit in a form (35)
or (48) and (49) is an ultimate superresolution limit for any restoration method. This
is a rigorous mathematical theorem and it says nothing about efficiency and resolution
of some specific methods for signal restoration. In next parts of the paper we are going
to describe the restoration algorithm based on the maximum likelihood method, to test
it and to show its efficiency for superresolution.

3. Maximum likelihood method for signal restoration

For restoration we use the maximum likelihood (ML) method [33] which is the gener-
alisation of Tarasko’s iteration algorithm [34]. For the case when the right-hand side
F(x;) has binomial (or Poisson) distribution in each separate point x; and jointly poly-
nomial distribution for the whole set of {F(x;)} values, for i = 1,2,...,n, the iteration
formula can be written in the form

‘l ( | - f
gi‘*’=gk"+hg£’2p,-k(———m ' m—l)- (51)
=1 2j1 Pygj

In this formula s = 1,2,... is the iteration number, the vector g,, k = 1,2,...,m,
equals the values of the unknown function fo(yj) in points y,,y,,...,y,; the vector
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fi i = 1,2,...,n, is proportional to the right-hand side function [F'(x;) in points
X{,Xp,..-,X,; and matrix p; is equal to the values of the PSF

Py = K(x.': Yj)~ ‘ (52)

I is the length step in the space of unknown vector {g,} in the direction which is
close to the gradient direction. At h = 1 the iteration procedure (51) coincides with
Tarasko’s procedure. The actual computer program implementation will be described

in a forthcoming publication.
In the procedure the values of f; and p; have to be normalised according to

relations

Y=t Y=t forj=12..m (53)
i=1 i=1 ’

The normalising condition and positiveness of the vector g, are automatically kept
at any step length h according to relations (51), although in our computer program
it does so after each iteration at h > 1 for more stability against truncation errors.
All discrete convolutions for the PSF in the form (4) are computed by the fast Fourier

transform (FFT) program.
The value of step length h is chosen according to steepest ascent of logarithmic

likelihood function

n
L = constant + N Zf,. Inp; (54)

i=1

where

m n
1’|=Zl’ikgk szNi N;=F(x)
k=1 i=1

by computing of derivatives dL/dhl|,_, and d’>L/dh?|,_, based on the exact analytical
formulae one time per each iteration. The optimal value of h is sometimes equal to the
value h ~ 10% + 10* and this is the explanation why our procedure (51) works faster
than the original procedure of Tarasko. : :

For the case when the right-hand side F(x) has the Gaussian distribution the
iteration formula (51) should be modified, but according to our numerical tests the use
of (51) for this case (instead of the more correct procedure specially written for the
Gaussian case) decreases the efficiency of restoration only slightly.

Iterations (51) should be continued while the value

n 2
chi?2 = Z % (55)
i=1 i

where ON; = N(p; — f;), is larger than the level of x2_,(P,), where P, is the significance
level of the x? criterion, which is usually assumed equal to 5%, and the iterations
should be stopped as soon as this value drops below the level

chi2 < x2 (P - (56)
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where P, = 80-95%.
All computation results have been obtained on an HP-1000 minicomputer at the

Institute for Physical Problems with the accuracy of 39 bits for mantissa (~ 1.8 x 1071%).
For number of data points n = 512 every 50 iterations took about 5 min of CPU time.
The total number of iterations depends first of all on how close is the value é to the
resolution limit and is sometimes as many as 5-10 thousand.

Because of such long CPU times, even using the FFT programs, a quesllon arises:
could it be possible to obtain similar results on superresolution by using some linear
restoration methods, i.e. based on the Fourier transform for convolution equation (1)
together with the optimal filtering? Regretfully the answer is negative because in
the cases where superresolution is interesting and important the width of the Fourier
transform spectrum of function F(x) on the right-hand side of equation (1) is always
much less than the one of the restored signal f,(y) which we look for. And any kind of
linear restoration methods can only modify the amplitudes of the Fourier harmonics
* but cannot generate the new ones which are absent in the input data or were lost in

the input noise.
» The nonlinear restoration method used in this work does actually extrapolate the
Fourier spectrum having input data of much higher frequencies compared with our
input data. This is an explanation in essence of the efficiency of the ML method for

signal restoration.

4. The numerical tests and their analysis

In numerical tests we examined the dependence of resolution limit for two- and three-
line signals as a function of signal-to-noise ratio for the different PSFs. For each of
the functions (5), (6), (44) and (45) the solution in the form of two (or three) narrow
Gaussian lines has been taken

m

foy) =Y exp(-u}) m=2or3 (57)
i=1
where u; = (y — y))/Dy, D, = D/40, and a convolution integral
Fy)= [ Klx—yfody (58)
—o0

is computed. The parameter D in (5), (6) (44) and (45) is chosen to be equal to such
a value that the PSFs decrease up to zero inside the interval (a,b) and in this case
the integral equation (1) can be considered to have infinite limits for integration. All
functions in calculations are determined on a discrete grid of points

x; =i i=1,2...,n (59)

t
and the integral is computed as a finite sum.
The number of points is usually equal to n = 512 but in some tests this number is
also equal to n = 2048,
To each of the computed values Fy(x;) has been added the noise N(x;) having the -
Gaussian distribution and non-correlated values in different points according to (29).
“Parameter o2 has been determined from the signal-to-noise ratio P,/ P, where

p= [ F29dx | o (60)

—00
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and
P, = no? (61)
according to the definition of decibel units dB = 101g(P,/P,)
1 P
2 s (62)

= 5 109B/10°

The formulae (27) and (60) for the energy of the signal are equivalent according to the
Parseval relation.

0 512 1024 1536 2048
3 T Ll
la) 3
2
IR
1 2
1
Pd
) K
3 T T T
(b)
3
2 2\
[
1 1 5
p A

0 128 256 38, 512

Figure 3. Examples of restoration for (a) one, (b) two and (c) three lines, illustrating the
original lines (curves 1), the point spread functions (curves 2), the initial data (curves 3) for
the restoration, and the results (curves 4) of restoration, and in (b) the zero level {curve 5)
for the psr. (a) The Lorentzian psF with D = 240, number of points n = 2048, signal-to-
noise ratio 30 dB, 500 iterations, x2/n = 1.0055. (b) PSF = sin x/x with D = 10, n = 512, sNR
= 17.5 dB, separation of two original lines 8, = 20, 1200 iterations, y*/n = 1.0269. In this
example the new version of restoration procedure was used, which was specially written for
the data having a Gaussian noise distribution. (c) the Lorentzian psF with D = 60, n = 512,
SNR = 20 dB, scparation of original lines 8, = 60, 1000 iterations, x2/n = 0.99037.
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For each given signal-to-noise ratio (SNR) the distance between two (or three) lines

8y =y~ ¥ (63)

is decreased up to such a value for which these lines can be well resolved by the
restoration algorithm.

6
{a)

0 130 260 390 520

Figure 4. Restoration of two lines convolved with the Lorentzian shape point spread
function and signal-to-noise ratio 20 dB for (a) separation of lines & = 35 greater than
resolution limit (67) and (b) separation § = 28 less than resolution limit (67), illustrating
the original lines (curves 1), the point spread functions (curves 2), the initial data (curves 3)
for the restoration, and the results (curves 4) of restoration.

The examples of restoration for one, two and three lines are shown in figure 3. An
example of two-line restoration is presented in figure 4 for the Lorentzian PSF (6) with
parameter D = 60, SNR = 20 dB and 4, = 35 (the lines are well resolved) and J, = 28
(the lines are not resolved). The superresolution coefficient, SR, in this example is ‘

SR = A/S, = snD /8, =2.1. (64)

It is worth noting that the width of transition gap between domains where there is

resolution and there is not is quite small—of about 20%,
The next example for the Gausian PSF with parameters D = 120, SNR = 45 dB and
5, = 30 is shown in figure 5(a). The superresolution coefficient for this example is ’

SR = A/52.= %nD/(S2 = 5.01. (65)

Figure 5(b) shows the Fourier spectra of the noisy input data F(x), of the precise
solution fy(y) and of the restoration result fy(y) as computed by iteration formula

(51).
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12

——3 la)

1 L L
128 256 384 512

L =1

1 (b)

N

0 20 40 60 80

Figure 5. (a) Restoration of two lines convolved with the Gaussian pSF and SNR = 45
dB, separation of lines 8 = 30 greater than resolution limit (67), illustrating the original
lines (curves 1), the point spread functions (curves 2), the initial data (curves 3) for the
restoration, and the results (curves 4) of restoration. (b) Corresponding Fourier spectra in
a linear scale, for curves 1, 3 and 4 as in (a).

It is seen from this figure that the Fourier spectrum of the restored signal has some
first minima at the correct places because the restoration result has a correct form of
the doublet lines. It is very important that the width of the Fourier spectrum for the
restored signal is much broader than the one for input noisy data. So the restoration
algorithm based on the nonlinear ML method really does extrapolate an input Fourier
spectrum to much higher frequency.

The next example for the Gaussian PSF and distance between two lines J, = 25
is presented in figure 6(a). In contrast with figure 5, this distance is less than the
resolution limit and the restoration algorithm cannot indeed resolve these two lines.
The Fourier spectra corresponding to this case are presented in figure 6(b). While the
Fourier spectrum of the restored signal is broader than the ones of the input data, -
the result of extrapolation is incorrect: instead of oscillation we have a smoothed
Gaussian-like spectrum.

The most obvious example to show the superresolution efficiency is presented in
figure 7 for the PSF (44). The Fourier transform of this PSF is

(@) ooK (6% dx = {nD(l — |w|D/2) for |w| < 2/D (66)
= T 0 for |o] = 2/D.

00

Thus there is no information in the input data concerning the unknown signal f4(y)
out of the frequency range |w| > 2/D. Nevertheless if the distance between two lines is
larger than the resolution limit, the restoration algorithm generates absent harmonics

and resolves these two lines.
A summary of such tests is presented in figure 8 for the three PSFs: (5), (6) and
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Figure 6. (a) Restoration of two lines convolved with the Gaussian shape PSF and SNR =
45 dB, for separation of lines & = 25 less than resolution limit (67), illustrating the original
lines (curves 1), the point spread functions (curves 2), the initial data (curves 3) for the
restoration, and the results (curves 4) of restoration. (b) Corresponding Fourier spectra in
a linear scale, for curves 1, 3 and 4 as in (a).

(44) with SNR between 10 and 50 dB. This figure shows the Shannon resolution limit
SR = %logz(l +P,/P,) (67)

the regression line for the numerical experiment data and the 95% confidence interval
for this line. There is a good agreement between them.

It follows from figure 8 that the superresolution depends roughly linearly on signal-
to-noise ratio in dB units, and this law does not depend in practice on the analytical
form of the point spread functions. This is the first conclusion from our numerical
tests. )
This result is quite a new one and it differs from the power relationship of:’
superresolution as a function of SNR in dB units stated in previous papers [14,20,27].
This is because we do not use any parametrisation for restoration. If we could
have some information concerning the unknown signal f(y) to be restored then the
superresolution limit (67) could be exceeded. /

Parametric methods can, in principle, have better resolution than the Shannon limit
(67) but these methods are only adequate for the restoration of a small set of signals. It
is probably more reasonable to use such a two-step (or adaptive) restoration procedure:
at first one should use the nonparametric algorithm and only after obtaining some
a posteriori information about unknown signals one could use more accurately the
parametric algorithms.

We can also see from figure 8 that the resolution which is achieved in practice is
approximately equal to the Shannon resolution limit and this fact is the demonstration
of the other part of Shannon’s theorem which we have mentioned above but have not
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Figure 7. (a) Restoration of two lines, convolved with (sinx/x)? point spread function
with D = 45 and sNR = 22.5 dB, for separation of lines = 48 greater than resolution
limit (67), illustrating the original lines (curves 1), the point spread functions (curves 2),
the initial data (curves 3) for the restoration, and the results (curves 4) of restoration. (b)
Corresponding Fourier spectra in a linear scale for curves 1, 3 and 4 as in (a) for 5000
iterations, x2/n = 0.96057. The numbers on the right-hand vertical axis are the ordinate

values for initial data 3.

proved: the principal possibility to reach the limit of resolution by choosing the special
encoding and decoding procedures.

Due to this the efficiency of the ML restoration algorithm presented in this paper is
approximately equal to 1 shannon. From our point of view the practical demonstration
of a restoration algorithm having the Shannon supremum efficiency has the same
importance as the theoretical proof of this part of the Shannon theorem. ‘

From the Shannon theorem and the numerical tests presented here we come to the
second conclusion of this paper: no restoration algorithm can have better resolution
than the ML algorithm documented here. Of course there are other algorithms which
may be faster and demand less computer memory but none of them can have better

resolution.

5. Application to a nuclear magnetic resonance (NMR) experiment

The result of applying the ML algorithm to an NMR experiment [35] with the heavy-
fermion superconductor UBe,, is presented in figure 9. It is clear from the figure that
some lines overlap to a considerable degree. To resolve these lines it is necessary above
all to find the PSF. Using the spectral lines farthest to the left and right (the ‘boundary’
lines), which have insignificant overlap with remaining components, we can reconstruct
the shape of an isolated line of this spectrum.
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T Figure 8. Summary of numerical tests for two- and three-line restoration. Open circles
indicate results for the two-line Gaussian pSF; open squares indicate the two-line Lorentzian
ps¥; the full square indicates the three-line Lorentzian psF; the open triangle indicates the
two-line PSF in the form of (sin x/x)2. Curve 1 is the Shannon superresolution limit (67);
curve 2 is the regression line for numerical tests, which coincides with the Shannon limit'
within the corridor of errors. The shaded strip shows the 95% confidence interval between
domains above and below the superresolution limit.
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Figure 9. Application of ML method algorithm (51) to NMR data processing [35]. Curve
. 1 is the original experimental data for NMR absorbtion. Curve 2 is the psk, which was

determined by gluing together the left and the right tails of curve 1. Curve 3 is the

restoration result for NMR absorbtion. Curve 4 is the numerical integral of curve 1.

Here we should note (together with the authors of {35]) that in this case the width
and shape of the lines are apparently identical for all the spectral components, since
they are primarily determined by the distribution of magnetisation in the sample (due
to the large value of the susceptibility and the sample’s non-ellipsoidal shape) and by
a dispersive admixture to the signal due to the fact that plate thicknesses in the sample

are of the order of the skin depth.
Thus we have both functions: the experimental data (curve 1) and the PSF (curve 2).



Shannon'’s superresolution limit for signal recovery 73

Curve 3 is the result of restoration and curve 4 is the numerical integral of curve 1.

The superresolution coefficient is equal to the ratio of the width of separate lines
in curve 4 to the width in curve 3: SR & 6. This value was expected from the formula
(67) because in this experiment the SNR is about equal to 55 dB. All restored lines are
quite distinct in this figure and fully interpreted in [35]. This example demonstrates
not only the efliciency of the restoration algorithm but also reveals information in the
raw experimental data which would be completely unrecognised and would be lost if
modern restoration methods were not used.

6. Superresolution and uncertainty princilple

From the mathematical point of view the Heisenberg uncertainty principle for coor-
dinate and momentum in quantum mechanics, the uncertainty principle for coherence
time and spectral frequency width in optical coherence theory and the uncertainty prin-
ciple for any two conjugate variables in general spectral analysis are only consequences
arising from the Fourier integral theory.

For readers’ convenience, we outline here the basic assumptions of this principle
following mainly {36,37]. Let f(x) be some considered signal and # (k) be its Fourier

transform

o0
Fk) = f £ (x)e* dx. (68)
We may determine the cffective mean-squared range of the function f(x) as
© . 272 1
(axy? = Ll X0 T (69)
_f_wf (x) dx
where
Xp = f xf2(x) dx (70)
o0 ,
is the mean valuet of x, and similarly for the Fourier transform F (k)
© (k — ko) F (k)12 dk
i = Lol 1 1) .
[ |7 (R)1? dic
where
. /
b= [ uF@Pa 7
—o0 ‘

is the mean value of k. Then, providing ko = 0, it is true by the general uncertainty

principle that
(Ax)(Ak) = pp = 1/4n = 0.079577 ... (73)

t Using the change of variables x' = x — xg we may consider xg = 0.
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corresponding to the Heisenberg quantum mechanics uncertainty principle
(Ax)(Ap) = h/4n
where h = 6.626 x 10727 erg s is the Planck constant.
If ko # O it was shown in [37] that

1 n—2 :
Ton {p < A 0.0265... < u < 0.0289... (74)

and hence p is a discontinuous function of ky (finite discontinuity from 0.02... to
0.079... at ky = 0).

It is worth noting that our earlier definition (42) for the range of a function is
suitable for a larger set of functions in comparison with the new definition (69), but
using (42) instead of (69) merely changes the numerical value of constant p.

Thus for any k, there is a lower limit for the product of the ranges of f(x) and its
Fourier transform % (k). This is a rigorous mathematical theorem and, of course, we
do not intend to refute it.

However, there is another way which gives us a possibility not to get over but to
go round the uncertainty principle.

Let f(x) be a signal having a large range Ax and therefore a small uncertainty Ak
of its Fourier spectrum. If we cannot directly observe the original function f(x) but

only its cut-down part

f) =10 AK) (75)
where the cutting function
A(x)=0 for [x] » AA (76)
then for the Fourier spectrum of the cut function f(x)
[oe]
Fk) = f ) A(x)e™™ dx (17
00

we have a greater uncertainty than for the original function f(x)
AF > Ak. (78)

This is true by the uncertainty principle.
But, from the convolution theorem in Fourier integral theory, it follows that

Flk) = f Wk~ Ky dK. (79)
Here </ (k) is the Fourier transform of A(x) a
(k) = f A(x)e* dx (80)

and (k) is that for f(x).

The basic relation (79) between % (k) and # (k) is the convolution integral equation
of the first kind. This paper demonstrates the ultimate resolution to find the function
# (k) from the equation (79) determined only by the noise level in the function ﬁ(k).
If this level is very small we can find & (k) from (79) with less uncertainty than AF.

This approach, going round the uncertainty principle, opens new ways for the
rigorous substantiation and practical development of effective algorithms for signal
recovery in optics, superresolution antennas, spectral analysis and, apparently, in
quantum mechanics.

In the last case additional problems arise in experimental measurements of complex
wavefunctions and in the physical sense of noise in such measurements. The author
hopes these problems can be resolved in future.
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7. Conclusion

In this paper the classical Shannon theorem is shown to be closely connected to the
ultimate superresolution limit of the general non-parametric signal restoration methods.
It is demonstrated that the ML restoration algorithm has a supremum efficiency equal
to' 1 shannon.

Of course, it does not follow from this conclusion that the ML algorithm is better
than any other. Much faster algorithms or those demanding less computer memory
may exist but none of them could have better resolution than the Shannon resolution

limit
SR = -log2(1 +P,/P,).

This formula is the main result of this paper.
It is not shown here why the ML algorithm has a supremum resolution, neither is

the mechanism of its efficiency explained. This is the subject for future research.

Acknowledgments

The author would like to thank Professors L A Vainstein and K Sh Zigangirov for
their interest in this work and their critical comments and his colleagues E R Podolyak
and V I Gelfgat for helping in program implementation. The author extends his thanks
to the reviewers for their helpful and constructive comments.

References

{1] Gorelik G S 1952 Application of modulation method in optical interferometry Dokl Akad. Nauk 83
549-52 (in Russian)
Bernstein I L and Gorelik G S 1952 On theory of the Michelson star interferometer Dokl. Akad. Nauk
86 47-50 (in Russian)
[2] Rautian S G 1958 Real spectral apparatus Sov. Phys—~Usp. 66 (1) 245-73
[3] Turchin V F, Kozlov V P and Malkevich M § 1971 The use of mathematical statistics methods in the
solution of incorrectly posed problems Sov. Phys.~Usp. 13 681-840
[4] Vainstein L A 1972 Noise filtering for numerical solution of the first kind integral equations Dokl.
Akad. Nauk 204 106770 (in Russian) o
Vainstein L A 1972 On numerical solution of the first kind integral equations with using of a priori
information on sought-for function Dokl. Akad. Nauk 204 1331-34 (in Russian)
{5] Frieden B R 1979 Image enhancement and restoration Picture Processing and Digital ‘Filtering ed T S
Huang (Berlin: Springer)
[6] Kosarev E L 1980 Applications of the first kind integral equation in expenmcntal physics Comput.
Phys. Commun. 20 69-75
[7] Tichonov A N and Arsenin V Ya 1977 Solution of Ill—posed Problems (New York: Wiley)
[8] Tichonov A N, Gontcharskii A V, Stepanov V V and Jagola A G 1983 Regularization Algorithms and
a priori Information (Moscow: Fizmatgiz) (in Russian)
[9] Mendel ] M 1983 Optimal Seismic Deconvolution (New York: Academic)
[10] Jansson P A 1984 Deconvolution with Application in Spectroscopy (New York: Academic)
[11] Vasilenko G I and Taratorkin A M 1986 Restoration of Images (Moscow: Radio i swjaz) (in Russian)
[12] Polion G E and Lank G E 1968 Angular tracking of two closely spaced radar targets IEEE Trans.
Aerospace Electron. System AES-4 541-50
{13] Gerchberg R W 1974 Superresolution through error energy reduction Opt. Acta 21 709-20
[14] Gabriel W F 1980 Spectral Analysis and Adaptive Array Superresolution Techniques Proc. IEEE 68

65466



76

{15}
[16]
{1
{18]
{19]
(20]

[21]
[22]

23]
24)
[25]
26)
27
28]
29]
30}
B1]
;2]
(3]
(34)
[35}

(36]
37

E L Kosarev

Shannon C E 1949 Communication in the presence of noise Proc. IRE 37 10-21

Toraldo di Francia G 1955 Resolving power and information J. Opt. Soc. Am. 45 497-501

Fellgett P B and Linfoot E H 1955 On the assesment of optical images Phil. Trans. R. Soc. Ser. A 247
369-407

Helstrom C W 1967 Image restoration by the method of least squares J. Opt. Soc. Am. 57 297-303

Rushfort C K and Harris R W 1968 Restoration, resolution and noise J. Opt. Soc. Am. 58 53945

Bershad N J 1969 Resolution, optical-channel capacity and information theory J. Opt. Soc. Am. 59
157-63

Khalfin L A 1969 On resolving power of optical devices Opt. Spektrosk. 26 1065-7 (in Russian)

Khurgin Ja I and Jakovlev V P 1971 Finite Functions in Physics and Techiques (Moscow: Fizmatgiz)
(in Russian) .

Stremel M A 1972 The limits of diffractometric analysis possibilities in fine structure measurements
Dokl. Akad. Nauk 203 570-3 (in Russian)

Vainstein L A and Vakman D E 1983 Resolution of Frequences in Theory of Oscillations and Waves
(Moscow: Fizmatgiz) (in Russian) )

Cathey W T, Frieden B R, Rhodes W T and Rushforth C K 1984 Image gathering and processing for
enhanced resolution J. Opt. Soc. Am. A 1 241--50

Bakut P A, Derjugin A I and Kuraschov V N 1985 Image restoration of partly coherently quasi-
homogeneous sources Radiotechnika Electronika 30 1119-25 (in Russian)

Karavaev V V and Molodtzov V S 1987 Accuracy characteristics of superresolution antenna Ra-
diotechnika Electronika 32 22-6 (in Russian)

Kharkevitch A A 1955 Outlines of General Communication Theory (Moscow: Gostechizdat) (in Russian) -

Wozenkraft J M and Jacobs 1 M Principles of Communication Engineering (New York: Wiley) ch 5 i

Kosarev E L and Pantos E 1983 Optimal smoothing of ‘noisy’ data by fast Fourier transform J. Phys.
E: Sci. Instrum. 16 53743

Kolmogorov A N 1956 Theory of information transmission Theory of Information and Theory of
Algorithms Collected papers (Moscow: Nauka 1987) (in Russian)

Zelen M and Severo N C 1972 Probability functions Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables ed M Abramowitz and 1 A Stegun (New York: Wiley)

Kosarey E L, Peskov V D and Podolyak E R 1983 High resolution soft x-ray spectrum reconstruction
by MWPC attenuation measurements Nucl. Instrum. Methods 208 63745

Tarasko M Z 1969 On the one method for solution of the linear system with stochastics matrixes
Preprint Physics and Energetics Institute, Obninsk, PEI-156 (in Russian)

Alekseevskii N E and Nikolaev E G 1986 Nuclear magnetic resonance in the heavy-fermion supercon-
ductor UBey3 Sov.Phys—JETP 64 (5) 1078-84

Born M and Wolf E 1968 Principles of Optics (Oxford: Pergamon) section 10.7.3

Mayer A G and Leontovitch E A 1934 On some inequality relating to Fourier's integral Sov. Math.

Dokl. 4 353-60



