НЕЗЕРКАЛЬНОЕ РЕНТГЕНОВСКОЕ РАССЕЯНИЕ НА ПЛАНАРНОМ ФОСФОЛИПИДНОМ МУЛЬТИСЛОЕ

А. М. Тихонов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

> Поступила в редакцию 28 мая 2020 г., после переработки 28 мая 2020 г. Принята к публикации 28 мая 2020 г.

По данным рефлектометрии и незеркального (диффузного) рентгеновского рассеяния уточнены параметры структуры планарных мультислойных пленок толщиной около 400 Å из насыщенных фосфолипидов DPPC и DSPC, сформированных на поверхности водной суспензии наночастиц кремнезема диаметром около 27 нм. Согласованный анализ данных рассеяния показывает, что структуру границы гидрозоль-липидная пленка-воздух образуют монослой наночастиц, ламеллярный липидный слой и примерно наполовину заполненный (рыхлый) монослой фосфолипида на границе с воздухом. Модельные профили электронной концентрации свидетельствуют о гидратации ламеллярной структуры на уровне примерно 6 молекул H₂O на липид. При этом вода и катионы Na⁺ локализованы в районе фосфохолиновых групп, что согласуется с результатами вычислений молекулярной динамики других авторов. Наблюдаемая шероховатость границ между липидными слоями составляет не менее 5 Å и указывает на наличие у них некапиллярно-волновой структуры шириной 3–6 Å. Покрытие липидным мультислоем вогнутой поверхности вращающейся гидрозольной жидкости в дефлекторе рентгеновского излучения с эффектом шепчущей галереи, по нашему мнению, является одним из возможных применений описанной технологии.

DOI: 10.31857/S0044451020110061

1. ВВЕДЕНИЕ

В литературе широко обсуждается использование различных мультислойных пленок из дифильных молекул, например, в нанотехнологических приложениях и в производстве современных электронных приборов [1–3]. Относительно простая и дешевая технология формирования планарных слоистых пленок на поверхности твердого субстрата из монослоев, первоначально сформированных на поверхности жидкости, основана на методе разработанным Ленгмюром и Блоджетт [4–8]. Ранее нами была описана новая мультислойная технология, основанная на спонтанном формировании плоской ламеллярной структуры из дифильных молекул фосфолипида DSPC на поляризованной поверхности жидкой подложки из кремнеземного гидрозоля [9]. Существенно, что толщина адсорбционной пленки (число слоев в ней) зависит от уровня рН в гидрозольной субфазе [10,11]. В настоящей работе мы даем обзор имеющихся и приводим новые систематические экспериментальные данные по рефлектометрии и незеркальному (диффузному) упругому рассеянию на мультислоях, сформированных из двух разных насыщенных фосфолипидов, DPPC и DSPC. Согласованный анализ этих данных позволяет уточнить параметры структуры мультислоя и однозначно указывает на то, что он состоит из гидратированных липидных бислоев. Это принципиально отличается от модели «сухих» бислоев, предложенной ранее [9]. По нашему мнению, покрытие вогнутой поверхности вращающейся жидкости (кремнеземного гидрозоля) липидным мультислоем в дефлекторе рентгеновского излучения с эффектом шепчущей галереи является одним из возможных применений описанной в работе [12] технологии.

[•] E-mail: tikhonov@kapitza.ras.ru

2. ЭКСПЕРИМЕНТ

Образцы пленок 1,2-дипальмитоил-sn-глицеро-3-фосфохолина (DPPC, $C_{40}H_{80}NO_8P$ И 1,2-дистеароил-sn-глицеро-3-фосфохолина (DSPC, С₄₄Н₈₈NO₈P) приготавливались и изучались во фторопластовой тарелке диаметром около 100 мм (рис. 1 и 2), помещенной в герметичный одноступенчатый термостат. Методика эксперимента описана в работе [9]. В качестве подложки использовались растворы Ludox TM-40 и TM-50 (pH \approx 9) аморфных частиц кремнезема диаметром $d \approx 27$ нм (Grace Davison) с концентрацией SiO₂ соответственно 40 и 50 % [13–15]. С помощью шприца (Hamilton) на поверхность золя высаживается капля объемом 5-10 мкл раствора с высокой концентрацией фосфолипида в хлороформе (около $3 \cdot 10^{-2}$ моль/л). Размазывание капли по поверхности жидкой подложки сопровождается падением поверхностного натяжения γ границы гидрозоль-воздух примерно с 74 мН/м до 45-35 мН/м, которое в нашем случае регистрировалось по методу Вильгельми с помощью датчика поверхностного давления NIMA PS-2 [16]. Количества вещества в распределенном таким образом по поверхности липидном слое достаточно для формирования однородного мультислоя из более чем десяти монослоев. Далее, образец поверхности приводился в равновесие в течение примерно 12 ч при T = 298 K.

Измерения коэффициента отражения R и интенсивности поверхностного незеркального (диффузного) рентгеновского рассеяния I на границе

Рис. 1. Термостатированная экспериментальная ячейка. В эксперименте рефлектометрии $\alpha = \beta$, при измерении рас-

Рис. 2. Молекулярная структура насыщенных фосфолипидов DPPC и DSPC

гидрозоль–воздух проведены с использованием синхротронного излучения на станции X19C синхротрона NSLS [17]. Источником излучения служил поворотный магнит с критической энергией около 6 кэВ. Конструкция этой станции позволяет изучать структуру плоских поверхностей твердых тел и жидкостей, а также межфазных границ углеводородная жидкость–вода, ориентированных силой гравитации [18–20]. В экспериментах использовался сфокусированный монохроматический луч фотонов с энергией E = 15 кэВ ($\lambda = 0.825 \pm 0.002$ Å) и интенсивностью порядка 10^{10} фотон/с при минимальной расходимости в вертикальной плоскости на уровне порядка 10^{-5} рад.

Введем систему координат, у которой начало О лежит в центре освещаемой падающим лучом области, а плоскость ху совпадает с границей жидкостьвоздух. В ней ось х перпендикулярна к направлению луча, а ось z направлена вдоль нормали к поверхности противоположно силе тяжести (см. рис. 1). Пусть \mathbf{k}_{in} и \mathbf{k}_{sc} — волновые векторы с амплитудой $k_0 = 2\pi/\lambda$ соответственно падающего и рассеянного лучей. Пусть α — угол скольжения, а β — угол между плоскостью границы жидкости и направлением на детектор в плоскости падения уг. В наших экспериментах оба угла $\alpha, \beta \ll 1$. Более того, угол ϕ между направлением падающего луча и направлением рассеяния в плоскости xy составляет $\phi \approx 0$. В этой системе координат компоненты вектора рассеяния $\mathbf{q} = \mathbf{k}_{in} - \mathbf{k}_{sc}$ в плоскости границы равны

$$q_x = k_0 \cos\beta \sin\phi \approx k_0 \phi \approx 0,$$

$$q_y = k_0 (\cos\beta \cos\phi - \cos\alpha) \approx k_0 (\alpha^2 - \beta^2)/2,$$

а вертикальная составляющая

 $q_z = k_0(\sin\alpha + \sin\beta) \approx k_0(\alpha + \beta).$

Измерение коэффициента отражения R проводится при условии $\alpha = \beta$, тогда единственной ненулевой компонентой вектора рассеяния является $q_z = 2k_0 \sin \alpha$. Экспериментальные зависимости $R(q_z)$ для липидных мультислоев из молекул DPPC и DSPC на границе гидрозоль-воздух показаны на рис. 3 соответственно кружками (субфаза TM-40) и квадратами (TM-50). На зависимостях $R(q_z)$ видна периодическая последовательность брэгговских рефлексов от липидной пленки. Их вид для мультислоев DSPC находится в полном соответствии с данными, опубликованными ранее, например, в работе [9].

При углах скольжения меньше $\alpha_c = \lambda \sqrt{r_e \rho_b/\pi} \approx 0.1^\circ$ (где $r_e = 2.814 \cdot 10^{-5}$ Å — классический радиус электрона) падающий луч испытывает полное

Рис. 3. Коэффициент отражения $R(q_z)$ от планарной границы гидрозоль-липидная пленка-воздух: квадраты — мультислой DSPC (TM-50); кружки — мультислой DPPC (TM-40). Непрерывные линии — расчет в борновском приближении искаженных волн с модельным структурным фактором (10) для N = 5

внешнее отражение $R \approx 1$. Если электронная концентрация ρ_w в чистой воде при нормальных условиях составляет $\rho_w \approx 0.333 \ e^-/\text{Å}^3$, то в гидрозолях концентрация $\rho_b \approx 1.2\rho_w$ и $\rho_b \approx 1.3\rho_w$ для соответственно TM-40 и TM-50.

В эксперименте размер падающего луча задается двухщелевым коллиматором и при углах скольжения $\alpha \approx \alpha_c$ составляет 10 мкм в вертикальной и около 2 мм в горизонтальной плоскостях. С возрастанием угла α вертикальный размер луча пропорционально увеличивается до максимального значения 0.2 мм при $\alpha \approx 10\alpha_c$ и далее при больших α остается неизменным. Таким образом, зависимости на рис. 3 получены усреднением значений $R(q_z)$ по макроскопически большой площади $A_0 \approx 0.2$ см², заданной геометрическими размерами падающего луча.

Измерения интенсивности поверхностного рассеяния, I/I_0 , проводились при фиксированном угле скольжения α , соответствующего первому максимуму на кривой $R(q_z)$. Для пленок DPPC и DSPC соответственно $\alpha \approx 0.35^{\circ}$ и $\alpha \approx 0.38^{\circ}$. При этом использовался коллимированный луч с угловой расходимостью в вертикальной плоскости $\Delta \alpha \approx 10^{-4}$ рад при

Рис. 4. Нормированная интенсивность диффузного рассеяния I/I_0 на липидных мультислоях как функция угла β : квадраты — мультислой DSPC (TM-50); кружки — мультислой DPPC (TM-40). Непрерывные линии — расчет в борновском приближении искаженных волн с модельным структурным фактором (10) для N = 7

угловом разрешении детектора $\Delta \beta \approx 3 \cdot 10^{-4}$ рад. Величина $I(\beta)$ — число фотонов, зеркально отраженных и диффузно рассеянных образцом в направлении β точечного детектора, а $I_0(\alpha)$ — нормировочная величина, пропорциональная интенсивности падающего луча. Коэффициент пропорциональности определяется из условия нормировки $I(\alpha)/I_0(\alpha) \equiv 1$. Измерение величин $I_0(\alpha)$ и $I(\beta)$ проводилось синхронизовано с помощью двух независимых сцинтилляционных точечных детекторов (Bicron), чтобы исключить временную зависимость интенсивности зондирующего луча от величины тока в кольце синхротрона NSLS. Данные рассеяния получены при размере падающего луча приблизительно 0.06 мм в вертикальной плоскости и 2 мм в горизонтальной. Таким образом, площадь области засветки в этом эксперименте составляет примерно равна А₀. Экспериментальные зависимости $I(\beta)/I_0(\alpha)$ для липидных мультислоев DPPC и DSPC на границе гидрозоль-воздух показаны на рис. 4.

У кривых на рис. 4 самый интенсивный пик соответствует зеркальному отражению при $\beta = \alpha$, а пик в диффузном фоне при $\beta \to 0$ соответству-

Рис. 5. Коэффициент отражения R как функция q_z от планарной границы гидрозоль-мультислой DSPC-воздух в зависимости от концентрации кремнезема в подложке: квадраты — 50%; кружки — 25%; треугольники — 3%

ет аномалии Йонеды при угле полного внешнего отражения α_c [21, 22]. В диффузном фоне на правом плече пика зеркального отражения для обоих мультислоев наблюдаются по четыре пика, интенсивность которых падает с возрастанием β . Относительно большой уровень диффузного фона на левом плече мы связываем с фоном малоуглового рассеяния на аморфных наночастицах в объеме субфазы.

Согласно нашим наблюдениям, мультислой формируется и остается стабильным на поверхности около гидрозоля со значительно меньшим размером наночастиц кремнезема, 5 нм (FM, pH = 10), а также при достаточно низкой концентрации кремнезема в субфазе (примерно 3%). Как продемонстрировано для липида DSPC на рис. 5, уменьшение концентрации кремнезема в подложке (раствор частиц размером 27 нм) более чем в 10 раз принципиально не влияет на возникновение интерференционных максимумов при $q_z \approx 0.09 \, \mathrm{\AA^{-1}}$ и $q_z \approx 0.18 \, \mathrm{\AA^{-1}}$ (штриховые линии), т.е. на процесс образования мультислойной структуры. При этом не важно, в какой момент изменяется объемная концентрация наночастиц методом замещения гидрозоля раствором NaOH (5 ммоль/л) в деионизированной воде, до или после нанесения липидного слоя. Кроме того, увеличив содержание ионов Na⁺ в субфазе (pH > 11), можно вызвать в ней переход золь-гель. После затвердевания поверхность подложки остается достаточно гладкой, так что механического повреждения, как и других структурных изменений в поверхностном мультислое, не происходит.

3. ТЕОРИЯ

Анализ экспериментальных данных мы провели с привлечением модельного подхода (slab model), при котором экспериментальные зависимости $R(q_z)$ и I/I_0 аппроксимируются расчетными кривыми при варьировании параметров модельного профиля электронной концентрации $\rho(z)$ (см. Приложение). Параметризация последнего проводилась с помощью функции опибок

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-y^2) \, dy,$$

которая используется, например, в общепринятой теории капиллярных волн [23–25].

В интервале $q_z > 0.05 \text{ Å}^{-1}$ согласованная интерпретация данных рефлектометрии и незеркального рассеяния проведена в борновском приближении искаженных волн (distorted wave Born approximation, DWBA) [26]. Зависимости I/I_0 моделировались в предположении, что основной вклад в незеркальное рассеяние дают шероховатости поверхности с корреляционной функцией высот, как у тепловых флуктуаций (капиллярных волн) [27–29]. В области малых значений $q_z < 0.05 \text{ Å}^{-1}$, где использование борновского приближения некорректно, моделирование кривых отражения проводилось при помощи рекуррентных соотношений Парратта [30].

Отметим, что применительно к слоисто-неоднородным структурам на твердых и жидких подложках борновское приближение искаженных волн является достаточно удобным способом интерпретации данных рассеяния как рентгеновских, так и нейтронных экспериментов [31–35]. Для планарных липидных мультислоев, сформированных на твердых кремневых подложках по технологии Ленгмюра-Блоджетт, это хорошо проиллюстрировано в работе [36]. Однако во всех этих системах субфаза является гомогенной средой, а граница пленка-субфаза достаточно гладкая, так что ее шероховатость составляет порядка нескольких ангстрем. В нашем случае граница пленка-гидрозоль имеет не резкую, а диффузную границу из осажденных («сконденсированных») наночастиц SiO₂ [15].

В борновском приближении искаженных волн интенсивность рассеяния

$$I/I_0 = I_{diff} + I_{spec},$$

где *I*_{diff} — интенсивность диффузного рассеяния, а *I*_{spec} — вклад зеркального отражения [26]. Угловая зависимость зеркального отражения $I_{spec}(\beta)$ при $\alpha = {\rm const}$ определяется аппаратной функцией углового разрешения детектора [27]. Если $I_{diff} \ll I_{spec}$, то при $\alpha = \beta$

$$I_{spec}(\alpha) \propto R(q_z) = \left| \frac{q_z - q_z^t}{q_z + q_z^t} \right|^2 \left| \Phi(\sqrt{q_z q_z^t}) \right|^2, \quad (1)$$

где $q_z^t \approx k_0 \left(\sqrt{\alpha^2 - \alpha_c^2} + \sqrt{\beta^2 - \alpha_c^2}\right) - z$ -компонента вектора рассеяния в нижней фазе, а структурный фактор

$$\Phi(q) = \frac{1}{\Delta\rho} \int_{-\infty}^{\infty} \left\langle \frac{d\rho(z)}{dz} \right\rangle e^{iqz} dz, \qquad (2)$$

где $\Delta \rho = \rho_b - \rho_0 \approx \rho_b$, так как концентрация электронов в воздухе $\rho_0 \approx 0$.

Незеркальная часть рассеяния имеет вид

$$I_{diff}(\alpha,\beta) \propto |T(\alpha)|^2 |T(\beta)|^2 |\Phi(\sqrt{q_z q_z^t})|^2, \quad (3)$$

где $T(\theta) = 2\theta/[\theta + \sqrt{\theta^2 - \alpha_c^2}], \ \theta = \alpha, \beta$ — трансмиссионный коэффициент Френеля для амплитуды волны с поляризацией в плоскости межфазной границы (естественная поляризация синхротронного излучения).

При расчетах мы использовали выражения для I_{diff} и I_{spec} , которые в явном виде приведены в работе [37]. Они учитывают гауссово распределение интенсивности луча в плоскости падения и оптическую схему измерений, реализованную на станции X19C синхротрона NSLS.

4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Особенности на кривых отражения $R(q_z)$ от гидрозольных поверхностей в области малых q_z < $< 0.05 Å^{-1}$, в принципе, содержат информацию о толщине липидного слоя и распределении наночастиц кремнезема вблизи его поверхности. Простейшая качественная модель, которая описывает коэффициент отражения в этой области, состоит из слоя наночастиц толщиной D с электронной концентрацией ρ_p , который граничит непосредственно с липидной пленкой толщиной L и со средней концентрацией электронов в ней $\bar{\rho}$ (см. вставку на рис. 6). Профиль модельного распределения $\rho^*(z)$ для этой двухслойной структуры имеет следующий вид:

Рис. 6. Модельное распределение $\rho^*(z)$ на границе гидрозоль-липидная пленка-воздух по данным рефлектометрии при $q_z < 0.05 \,\text{\AA}^{-1}$ для мультислоя DSPC (субфаза: TM-50), нормированное на электронную концентрацию в воде $ho_w \approx 0.333 \ e^-/{
m \AA}^3$ при нормальных условиях. Встав-

ка — двухслойная модель межфазной границы

$$\rho^*(z) \approx \frac{1}{2}\bar{\rho} + \frac{1}{2}\bar{\rho}\operatorname{erf}\left(\frac{z}{\sigma\sqrt{2}}\right) + \frac{1}{2}(\rho_p - \bar{\rho})\operatorname{erf}\left(\frac{z+L}{\sigma_p\sqrt{2}}\right) + \frac{1}{2}(\rho_b - \rho_p)\operatorname{erf}\left(\frac{z+L+D}{\sigma_p\sqrt{2}}\right), \quad (4)$$

где *σ* — среднеквадратичное отклонение положения границы воздух-липидная пленка при $z_0 = 0$, а σ_p среднеквадратичное отклонение положения границ слоя наночастиц от их номинальных значений – L и -(L+D).

Минимальная величина квадрата параметра σ^2 , определяющего ширину (шероховатость) границ раздела в липидной пленке, задана квадратом «капиллярной ширины»

$$\sigma_0^2 = \frac{k_B T}{2\pi\gamma} \ln \frac{Q_{max}}{Q_{min}},\tag{5}$$

которая, в свою очередь, задается коротковолновым пределом в спектре капиллярных волн $Q_{max} = 2\pi/a$ $(a \approx 10 \text{ \AA} - \text{по порядку величины межмолекуляр-}$ ное расстояние) и $Q_{min} = q_z^{max} \Delta \beta/2 (q_z^{max} - \text{мак-}$ симальное значение q_z в эксперименте) [27, 28, 38].

Рис. 7. Модель границы гидрозоль-липидная пленка-воздух

Согласно выражению (5), для нашего эксперимента $\sigma_0 \approx 4$ Å.

На рис. 6 сплошной линией показано нормированное модельное распределение $\rho^*(z)$ на границе воздух–пленка DSPC–гидрозоль ТМ-50 по данным рефлектометрии при $q_z < 0.05 \text{ Å}^{-1}$ с подгоночными параметрами $D \approx 250 \text{ Å}$, $\rho_p \approx 1.4 \rho_w$, $L \approx 250 \text{ Å}$ и $\bar{\rho} \approx 1.1 \rho_w$. Так как $D \approx d$, слой наночастиц можно условно считать монослоем.

Во-первых, отметим большое значение параметра $\sigma_p \approx 50$ Å, демонстрирующее диффузность границ у слоя наночастиц. Интенсивность отражения от них, пропорциональная $\exp(-\sigma_p^2 q_z^2)$, становится несущественной при $q_z > 0.05$ Å⁻¹. Во-вторых, толщина изучаемой приповерхностной структуры L+D > 500 Å, т. е. не менее длины пространственной когерентности источника излучения в эксперименте, $\lambda^2/\delta\lambda \approx 400$ Å. По этим причинам более детально разъяснить вопрос об устройстве границы слой наночастиц–липидная пленка только по зависимости $R(q_z)$ затруднительно.

На рис. 7 представлена качественная многослойная модель планарной межфазной границы гидрозоль-липидная пленка-воздух, которая отображает элементы структуры, установленные по всей совокупности экспериментальных данных. Она включает монослой наночастиц 3, сконденсированных на поверхности липидного слоя 2 с ламеллярной структурой и незаполненный («рыхлый») монослой 1 фосфолипида на границе с воздухом.

Положение, интенсивность и ширина пиков в зависимостях $R(q_z)$ в области $q_z > 0.05 \text{ Å}^{-1}$ содержит информацию о внутреннем строении липидной пленки. Расстояние Δq_z между пиками на кривых отражения задает период структуры $l \approx 2\pi/\Delta q_z$. Для пленки DPPC $\Delta q_z \approx 0.1 \text{ Å}^{-1}$, а для пленки

DSPC $\Delta q_z \approx 0.09 \text{ Å}^{-1}$, что соответствует периодам $l \approx 64 \text{ Å}$ и $l \approx 69 \text{ Å}$. Величины l примерно равны двум длинам липидных молекул, т.е. пленка состоит из бислоев (ламеллярная структура).

Условно дифильную молекулу фосфолипида (см. рис. 2) можно представить как состоящую из двух частей, а именно, гидрофобной и гидрофильной. Первая образована алифатическими цепями CH₃-(CH₂)_{m-1}-, по две на молекулу, где m = 15для DPPC и m = 17 для DSPC. Вторая образована глицеро-фосфохолиновых группой -C₁₀H₁₈NO₈P и содержит 164 электрона. Положим, что бислой образуют два липидных монослоя, ориентированных алифатическими (жирными) хвостами навстречу друг другу, тогда $l = 2(l_1 + l_2)$, где l_1 — толщина слоя, состоящего из жирных хвостов, а l_2 — толщина слоя, образованного полярными группами. Электронные концентрации в слоях хвостов и полярных головок соответственно ρ_1 и ρ_2 .

В этом случае модельное распределение электронной концентрации ламеллярной структуры P_2 (см. выражение (8) в Приложении) описывается пятью параметрами, l_1 , l_2 , ρ_1 , ρ_2 и σ , значения которых можно оценить, воспользовавшись известными рентгеноструктурными данными для кристаллов углеводородов, значением поверхностного натяжения γ , данными скользящей дифракции для мультислоя DSPC, а также информацией о молекулярной структуре фосфолипидов. Согласно данным скользящей дифракции, мультислой DSPC находится в упорядоченном состоянии с упаковкой, близкой к гексагональной фазе $P_{\beta'}$ с площадью на молекулу $2S \approx 42 \,\text{\AA}^2$ [9,39]. Объем, занимаемый группой $-CH_2$ -, в гексагональной фазе равен $V_0 \approx 25-26$ Å³ [40]. Таким образом, оценочная толщина слоя углеводородных хвостов CH₃-(CH₂)_{m-1}- составляет $l_1 \sim mV_0/S \approx 18$ Å для DPPC и $l_1 \approx 21$ Å для DSPC. Таким образом, $l_2 = l/2 - l_1 \approx 14$ Å. Ожидаемая электронная плотность в слоях хвостов $\rho_1 \approx \rho_w \ (8m+1)$ электронов в объеме mV_0 , где $ho_w = 0.333 \, e^-/{
m \AA}^3$ — электронная концентрация в воде. Номинальная электронная концентрация ρ_2 в слое полярных групп составляет $164e^{-}/2Sl_{2} \approx$ $\approx 0.8 \rho_w$. Эта оценка параметров верна только для пленки, состоящей из «сухих» липидов.

В окрестности $q_z \approx 0.25 \,\text{\AA}^{-1}$ наблюдается небольшой провал на кривых $R(q_z)$. Это указывает на наличие незаполненного монослоя на границе с воздухом. В модельном профиле $\rho(z)$ (см. выражение (6) в Приложении) структуру монослоя описывает член P_1 (7) с двумя свободными параметрами, а именно, толщиной слоя жирных хвостов

Липид	$ ho_b/ ho_w$	$l_1, \text{ Å}$	$l_2, \text{\AA}$	$ ho_1/ ho_w$	$ ho_2/ ho_w$	σ , Å	$\sigma', Å$
DPPC	1.2	$27^{\pm 0.5}$	$5^{\pm 0.5}$	$1.01^{\pm 0.03}$	$1.3^{\pm 0.06}$	$5.0^{\pm 0.2}$	3-6
DSPC	1.3	$29^{\pm 0.5}$	$5^{\pm 0.5}$	$1.04^{\pm 0.03}$	$1.27^{\pm 0.06}$	$5.0^{\pm 0.2}$	3-6

Таблица. Модельные параметры гидратированных липидных бислоев

Примечание. l₁ — толщина слоя углеводородных хвостов с плотностью ρ₁; l₂ — толщина слоя фосфохолиновых групп с плотностью ρ₂; σ — ширина границ по данным рефлектометрии; σ' — оценка ширины некапиллярно-волновой структуры; ρ_w = 0.333 e⁻/Å³ — электронная плотность воды. Ошибки в определении параметров были установлены с использованием стандартного критерия χ^2 на доверительном уровне 0.9.

Рис. 8. Модельные профили сухого (a) и гидратированного (δ) липидных бислоев. Штриховые линии — профили при шероховатости $\sigma = 0$

 l_t и электронной концентрацией ρ_t . Полярная часть молекул рыхлого монослоя в этой модели для $\rho(z)$ формально присоединяется к гидрофильному слою ламеллярной структуры. При $l_t \approx 14$ Å и $\rho_t \approx 0.4 \rho_w$ можно добиться заметно лучшего согласия между расчетными кривыми и экспериментальными зависимостями $R(q_z)$ для пленок обоих липидов, чем при расчетах без учета рыхлого монослоя.

Таким образом, зависимости $R(q_z)$ на рис. 3 при $q_z > 0.05 \text{ Å}^{-1}$ достаточно хорошо описываются расчетными кривыми со структурным фактором $\Phi(q)$ (см. формулу (10) в Приложении) для модельного мультислоя, включающего рыхлый монослой и N = 5-7 фисфолипидных бислоев (L = 350-450 Å). Именно при этих значениях N расчетная ширина интерференционных максимумов сопоставима с экспериментально наблюдаемой величиной $\delta q_z \approx 0.02 \text{ Å}^{-1}$. Однако допускаются два решения: с $\rho_2 \approx 0.8\rho_w, l_2 \approx 14 \text{ Å}$ («сухой» мультислой) и $\rho_2 \approx \approx 1.3\rho_w, l_2 \approx 5 \text{ Å}$ (гидратированный мультислой).

На рис. 8 представлены профили бислоев для этих альтернативных аппроксимаций.

Положение и ширина пиков в фоне незеркального рассеяния I/I_0 на рис. 4 качественно описывается моделями адсорбционных пленок с шестью-семью бислоями. Интенсивность пиков рассеяния и высокий уровень диффузного фона не могут быть описаны только вкладом рассеяния на тепловых флуктуациях поверхности, которым соответствует ширина $\sigma_0 \approx 4 \,\mathrm{A}$. Наблюдаемая шероховатость границ ламеллярной структуры по данным рассеяния значительно выше, чем по данным рефлектометрии ($\sigma =$ $= 5.0 \pm 0.2$ Å) и составляет примерно 8 Å. Отсутствие пика в окрестности $\beta \approx 4^{\circ}$ на рис. 4 накладывает сильное ограничение на допустимые диапазоны подгоночных параметров $\rho_2 > 1.1 \rho_w$ и $l_2 \approx 5$ Å. Таким образом, угловая зависимость незеркального рассеяния позволяет отвергнуть модель с сухими бислоями (рис. 8а) и свидетельствует в пользу структуры с гидратированными бислоями (рис. 86). Непрерывными линиями на рис. 3 и 4 показан расчет, а в таблице приведены подгоночные значения для модельных параметров гидратированного мультислоя, основанные на согласованном анализе данных зеркального отражения и незеркального рассеяния. По нашему мнению, лучшего согласия между экспериментальными зависимостями I/I₀ и расчетными кривыми можно добиться при учете малоуглового рассеяния на наночастицах в объеме субфазы, которым пренебрегалось.

5. ОБСУЖДЕНИЕ

Спонтанное образование липидного мультислоя обеспечивается необычными граничными условиями на поверхности гидрозоля, которые обусловлены разницей в потенциалах сил электрического изображения для катионов Na⁺ и отрицательно заряженных наночастиц (макроионов) кремнезема. Образующаяся приповерхностная структура имеет ширину порядка дебаевской длины экранирования в объеме раствора (500 Å) [41, 42]. При этом на поверхности гидрозоля наблюдается достаточно высокая концентрация катионов Na⁺ = (4–7) · 10¹⁸ м⁻², которые, по-видимому, вовлекаются в процесс формирования структуры мультислоя [43]. Восстановленные ранее с помощью модельно-независимого подхода профили электронной концентрации демонстрируют, что толщина, например, пленки DSPC на поверхности золя по порядку величины также совпадает с дебаевской длиной экранирования [10].

Ранее рядом авторов по результатам вычислений молекулярной динамики было показано, что ионы Na⁺ могут внедряться в липидные мембраны и формировать тем самым положительный поверхностный потенциал [44-46]. Для бислоев DPPC катионы натрия локализуются в районе фосфатной и карбонильных групп [47]. В работе [11] обсуждалось, что при образовании мультислоя может происходить перераспределение поверхностного заряда за счет спонтанной электропорации липидных бислоев в поле поверхностного электрического двойного слоя [48–50]. При этом должна возникать некоторая система каналов транспорта ионов Na⁺ из объема гидрозоля к границе с воздухом [51, 52]. Такой механизм переноса заряда объясняет относительно небольшое характерное время формирования мультислоя, $(1-7) \cdot 10^5$ с [11].

Поскольку в водной среде золя катионы Na⁺ находятся в гидратированном состоянии, ионный транспорт также должен приводить к переносу и накоплению в липидной пленке коордиационной воды и, возможно, анионов OH⁻. Это отражено в наблюдаемом контрасте ламеллярной структуры. Параметр l_1 превышает полную длину алифатических хвостов липидных молекул примерно на 8 Å, что порядка размера глицериновой группы. Разумно предположить, что параметры ρ_2 и l_2 отражают упаковку (контраст) только фосфохолиновых групп, в районе которых могут быть локализованы молекулы воды и ионы Na⁺, OH⁻.

Ионный транспорт должен неизбежно приводить к образованию множества дефектов структуры, проявляющихся, например, как уширение границ между липидными слоями. По данным для $R(q_z)$ подгоночное значение для параметра шероховатости $\sigma \approx 5$ Å ($\sigma \ll \sigma_p$) заметно превышает капиллярную ширину $\sigma_0 \approx 4$ Å (5), что свидетельствует о некапиллярно-волновой или диффузной природе этих границ. Грубая оценка вклада этой собственной структуры в наблюдаемое значение σ по данным рефлектометрии составляет $\sigma' = \sqrt{\sigma^2 - \sigma_0^2} \geq 3$ Å [38, 53]. Аппроксимация зависимостей I/I_0 показывает, что $\sigma' \approx 6$ Å.

Факт существенного отклонения электронной концентрации $\rho_2 \approx 1.3 \rho_w$ от «номинальной» величины $0.8 \rho_w$ является принципиальным. Он позволяет отвергнуть модель сухой ламеллярной структуры, предложенной в работе [9] и согласуется с экспериментальными данными по кинетике формирования мультислоев DSPC из работы [11]. В мультислоях регистрируемый избыток электронов $\Delta\Gamma$ на молекулу липида составляет примерно одинаковую величину:

$$\Delta \Gamma = 2S(l_1\rho_1 + l_2\rho_2) - \Gamma = 70 \pm 20,$$

где Г — число электронов в молекулах DPPC (Г = = 406) и DSPC (Г = 438). Ион Na⁺ и молекула H₂O содержат по 10 электронов, а в анионе OH⁻ их 8. Согласно молекулярно-динамическим расчетам в среднем на две молекулы фосфолипида может приходиться по паре ионов Na⁺ и OH⁻ [47], тогда на одну фосфохолиновую группу в мультислое приходится примерно 6 молекул воды. Эта величина в два-три раза меньше степени гидратации, которая сообщалась для объемных гексагональной $P_{\beta'}$ или орторомбической $L_{\beta'}$ жидкокристаллических фаз DPPC [39]. Однако она является типичной величиной для конденсированной LC-фазы ленгмюровского фосфолипидного монослоя [54, 55].

В заключение отметим, что мультислойные покрытия имеют широкую область применений в оптических приборах, например, в рентгеновских зеркалах и монохроматорах [56]. Недавно в работе [12] с помощью рентгеновской рефлектометрии и флуоресценции были исследованы моды шепчущей галереи на вогнутой поверхности вращающейся жидкости. В этих экспериментах изучены галереи, возникающие на поверхности воды и гидрозоля наночастиц аморфного кремнезема ТМ-40. В последнем случае был достигнут наибольший угол отклонения рентгеновского луча поверхностью, $\Psi \approx 4^{\circ}$, при допустимых потерях в его интенсивности. Так как величина Ψ зависит от скорости вращения тарелки с жидкостью, эту систему можно рассматривать, как дефлектор рентгеновских лучей с возможностью непрерывной регулировки угла отклонения. По нашему мнению, покрытие поверхности вращающейся гидрозольной жидкости липидным мультислоем является одним из возможных применений описанной технологии и позволит задействовать в дефлекторной системе незеркальный канал упругого рассеяния на шероховатостях межфазной границы. Острые пики на

угловых зависимостях I/I_0 (см. рис. 4) позволяют ожидать заметного увеличения диапазонов как для угла входа падающего луча в галерею, так и его отклонения Ψ .

Финансирование. Синхротрон NSLS использовался при поддержке Департамента энергетики США по контракту № DE-AC02-98CH10886. Станция X19C финансировалась из фондов ChemMatCARS, Университета Чикаго, Университета Иллинойса в Чикаго и Университета Стони Брук. Теоретическая часть работы выполнена за счет гранта Российского научного фонда (проект № 18-12-00108).

ПРИЛОЖЕНИЕ

Параметризация профиля $\rho(z)$, соответствующего многослойной структуре, изображенной на рис. 7, может быть проведена следующим образом:

$$\rho(z) \approx P_1 + P_2 + P_3 + \frac{1}{2}\rho_b,$$
(6)

где граница с воздухом выбрана при $z_0 = 0$.

Незаполненный (рыхлый) монослой липидных хвостов толщиной l_t и плотностью ρ_t на границе с воздухом описывается первым слагаемым

$$P_1 \approx \frac{1}{2}\rho_t \operatorname{erf}\left(\frac{z}{\sigma\sqrt{2}}\right) + \frac{1}{2}(\rho_2 - \rho_t)\operatorname{erf}\left(\frac{z+l_t}{\sigma\sqrt{2}}\right), \quad (7)$$

где σ — среднеквадратичное отклонение положения границ в липидной структуре от их номинальных значений.

Мультислой из N фосфолипидных бислоев описывается периодической структурой

$$P_2 \approx \sum_{j=1}^{j=N} \frac{1}{2} (\rho_2 - \rho_1) \operatorname{erf}\left(\frac{z + z_j - 2l_1}{\sigma\sqrt{2}}\right) + \frac{1}{2} (\rho_p - \rho_2) \operatorname{erf}\left(\frac{z + L}{\sigma\sqrt{2}}\right), \quad (8)$$

где l_1 — толщина слоя с плотностью ρ_1 , состоящего из углеводородных цепей, l_2 — толщина слоя с плотностью ρ_2 , образованного полярными группами, $z_j = l_t + jl$ — период, $l = 2(l_1 + l_2)$ — толщина бислоя, $L = z_N + l_2$ — полная толщина липидной пленки, а ρ_p — электронная концентрация в монослое наночастиц. Границы ламеллярной структуры на рис. 7 образованы слоями из полярных групп липидных молекул и лежат в интервале $(-l_t, -L)$. Электронная концентрация в монослое наночастиц SiO_2 , примыкающего к липидной пленке, описывается третьим слагаемым

$$P_{3} \approx \frac{1}{2}(\rho_{p} - \rho_{2})\operatorname{erf}\left(\frac{z+L}{\sigma_{p}\sqrt{2}}\right) + \frac{1}{2}(\rho_{b} - \rho_{p})\operatorname{erf}\left(\frac{z+L+D}{\sigma_{p}\sqrt{2}}\right), \quad (9)$$

где D — толщина монослоя наночастиц с ρ_p , σ_p — среднеквадратичное отклонение положения его границ от их номинальных значений -L и -(L+D).

Поскольку $\sigma_p \gg \sigma$, при согласованном анализе данных вкладом неоднородностей P_3 можно пренебречь. В этом случае структурный фактор пленки $\Phi(q)$ имеет следующий вид:

$$\Phi \approx \Phi_1 + \Phi_2. \tag{10}$$

Рыхлому монослою липидных хвостов соответствует

$$\Phi_1(q) \approx \frac{\exp(-\sigma^2 q^2/2)}{\rho_b} \left[\rho_t + (\rho_2 - \rho_t) \exp(-iql_t)\right].$$
(11)

Структурный фактор мультислоя из N бислоев равен

$$\Phi_{2}(q) \approx \frac{\exp(-\sigma^{2}q^{2}/2)}{\rho_{b}} \times \\ \times \sum_{j=1}^{N} (\rho_{1} - \rho_{2}) \left[1 - \exp(2iql_{1})\right] \exp(-iqz_{j}) + \\ + \frac{\exp(-\sigma^{2}q^{2}/2)}{\rho_{b}} (\rho_{p} - \rho_{2}) \exp(-iqL).$$
(12)

Отметим, что модель ламеллярной структуры вполне соответствует пространственному разрешению имеющихся экспериментальных данных $(2\pi/q_z^{max} \approx 10 \text{ Å})$. Использование более сложных моделей приводит к значительному увеличению неоднозначности в определении значений их параметров.

ЛИТЕРАТУРА

- X. Chen, S. Lenhert, M. Hirtz, N. Lu, H. Fuchs, and L. Chi, Accounts Chem. Res. 40, 393 (2007).
- O. Purrucker, A. Fortig, K. Ludtke, R. Jordan, and M. Tanaka, J. Amer. Chem. Soc. 127, 1258 (2005).
- H. Kaur, S. Yadav, A. K. Srivastava, N. Singh, J. J. Schneider, Om. P. Sinha, V. V. Agrawal, and R. Srivastava, Sci. Rep. 6, 34095 (2016).

- 4. I. Langmuir, J. Amer. Chem. Soc. 39, 1848 (1917).
- 5. K. B. Blodgett, J. Amer. Chem. Soc. 57, 1007 (1935).
- K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
- 7. I. R. Peterson, J. Phys. D 23, 379 (1990).
- N. A. Kotov, F. C. Meldrum, C. Wu, and J. H. M. Fendler, J. Phys. Chem. 98, 2735 (1994).
- 9. А. М. Тихонов, Письма в ЖЭТФ 92, 394 (2010).
- **10**. А. М. Тихонов, В. Е. Асадчиков, Ю. О. Волков, Письма в ЖЭТФ **102**, 536 (2015).
- А. М. Тихонов, В. Е. Асадчиков, Ю. О. Волков, Б. С. Рощин, И. С. Монахов, И. С. Смирнов, Письма в ЖЭТФ 104, 880 (2016).
- L. I. Goray, V. E. Asadchikov, B. S. Roshchin, Yu. O. Volkov, and A. M. Tikhonov, OSA Continuum
 460 (2019).
- T. Graham, Phil. Trans. Roy. Soc. London 151, 183 (1861).
- J. W. Ryznar, Colloidal Chemistry: Theoretical and Applied, Vol. VI, ed. by J. B. Alexander, Reinhold Publ. Corp., New York (1946).
- В. Е. Асадчиков, В. В. Волков, Ю. О. Волков, К. А. Дембо, И. В. Кожевников, Б. С. Рощин, Д. А. Фролов, А. М. Тихонов, Письма в ЖЭТФ 94, 625 (2011).
- A. W. Adamson, *Physical Chemistry of Surfaces*, John Wiley & Sons, New York (1976).
- M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).
- F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).
- 19. J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Colloid and Interface Sci. 318, 103 (2008).
- 20. S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispersion Sci. Technol. 27, 715 (2006).
- 21. Y. Yoneda, Phys. Rev. 131, 2010 (1963).
- 22. J. B. Bindell and N. Wainfan, J. Appl. Cryst. 3, 503 (1970).

- 23. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).
- 24. E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).
- 25. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).
- 26. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).
- 27. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).
- 28. D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).
- 29. D. M. Mitrinovic, S. M. Williams, and M. L. Schlossman, Phys. Rev. E 63, 021601 (2001).
- 30. L. G. Parratt, Phys. Rev. 95, 359 (1954).
- G. Vignaud, A. Gibaud, J. Wang, S. K. Sinha, J. Daillant, G. Grubel, and Y. Gallot, J. Phys. Condens. Matter 9, L125 (1997).
- 32. M. Li, A. M. Tikhonov, and M. L. Schlossman, Europhys. Lett. 58, 80 (2002).
- **33**. А. М. Тихонов, Письма в ЖЭТФ **105**, 737 (2017).
- 34. R. A. Campbell, Yu. Saaka, Ya. Shao, Yu. Gerelli, R. Cubitt, E. Nazaruk, D. Matyszewska, and M. J. Lawrence, J. Colloid and Interface Sci. 531, 98 (2018).
- 35. M. Delcea and C. A. Helm, Langmuir 35, 8519 (2019).
- 36. J. K. Basu and M. K. Sanyal, Phys. Rep. 363, 1 (2002).
- **37**. А. М. Тихонов, Письма в ЖЭТФ **104**, 318 (2016).
- 38. D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).
- 39. M. G. Ruocco and G. G. Shipley, Biochem. Biophys. Acta 691, 309 (1982).
- 40. D. M. Small, *The Physical Chemistry of Lipids*, Plenum Press, New York (1986).
- 41. A. Madsen, O. Konovalov, A. Robert, and G. Grubel, Phys. Rev. E 64, 061406 (2001).
- 42. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).
- 43. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).
- 44. S. A. Pandit and M. L. Berkowitz, Biophys. J. 82, 1818 (2002).

- M. Yi, H. Nymeyer, and H.-X. Zhou, Phys. Rev. Lett. 101, 038103 (2008).
- 46. R. D. Porassoa and J. J. L. Cascalesa, Colloids and Surf. B 73, 42 (2009).
- 47. S. A. Pandit, D. Bostick, and M. L. Berkowitz, Biophys. J. 84, 3743 (2003).
- 48. J. M. Crowley, Biophys. J. 13, 711 (1973).
- 49. U. Zimmermann, G. Pilwat, and F. Riemann, Biophys. J. 14, 881 (1974).
- И. Г. Абидор, В. Б. Аракелян, В. Ф. Пастушенко, М. Р. Тарасевич, Л. В. Черномордик, ДАН СССР 240, 733 (1978).

- 51. K. C. Melikov, V. A. Frolov, A. Shcherbakov, A. V. Samsonov, Yu. A. Chizmadzhev, and L. V. Chernomordik, Biophys. J. 80, 1829 (2001).
- 52. M. Tarek, Biophys. J. 88, 4045 (2005).
- 53. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).
- 54. H. Mohwald, Ann. Rev. Phys. Chem. 41, 441 (1990).
- 55. Yu. A. Ermakov, V. E. Asadchikov, B. S. Roschin, Yu. O. Volkov, D. A. Khomich, A. M. Nesterenko, and A. M. Tikhonov, Langmuir 35, 12326 (2019).
- 56. D. G. Stearns, R. S. Rosen, and S. P. Vernon, Appl. Opt. 32, 6952 (1993).