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Liquid-solid interface of He has been investigated down to mK-temperatures
using an optical interferometer in combination with a sensitive pressure
gauge. The c-facets with 5-100 screw dislocations/cm2 grew with spiral
growth which can be understood by including inertial terms and localization
of steps to the standard theory. Crystals without screw dislocations revealed
two novel growth mechanisms. At growth rates > 1 nm/s, these high-quality
crystals grew in a burst-like manner, creating abruptly 200-2000 new atomic-
layers. At rates below 0.5 nm/s, the c-facet revealed slow, continuous growth.
Studies of a-facets yielded a velocity vs. pressure dependence which can be
explained by spiral growth. The shape of the c-facet was monitored down to
2 mK without any evidence of the freezing of kinks. Pressure measurements
down to our minimum temperature did not show any anomalies connected
with the supersolid transition. Indications of new faceting transitions were not
observed down to 2 mK.

1. INTRODUCTION

Solid 4He provides an excellent opportunity to study liquid-solid inter-
faces.1-3 Typically, growth of an interface is affected by the bulk properties
since mass and heat flows are the limiting factors. However, at low tem-
peratures 4He transports heat away very fast and the latent heat of fusion
is almost zero. As a result the interface can relax very quickly and it is
possible to measure directly its equilibrium properties. 4He is also an out-
standingly pure substance since all other elements are frozen out except for
3He.

The growth of an atomically rough surface of 4He has shown
extremely high rates, especially at very low temperatures.4-8 On the other
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hand, the existence of atomically smooth surfaces, facets, has made it
possible to study growth mechanisms which are based on the movement of
elementary steps on top of a flat surface. The growth rates of facets are
considerably smaller than those of the rough parts, which reflects the
problems in placing new atoms on smooth surfaces. At high temperatures
near the roughening transition, it is possible to nucleate terraces thermally.
This growth mechanism has been studied on the c-facets at temperatures
above 1 K by Wolf et al.9 and later by Gallet et aL.10 In the former work,
a-facets were also studied down to 70 mK. The experiments showed that
screw dislocations were responsible for the growth far below the roughening
temperature. More recently, Tsymbalenko has measured the growth of
both c- and a-facets in the temperature range of 0.5-1.5 K.11 He assigned
his results to the spiral growth from Frank-Read sources influenced by
surface defects.

The classical picture of spiral growth predicts a facet velocity propor-
tional to the driving pressure squared. However, this prediction is not
necessarily valid any more at low temperatures when the mobility of steps
becomes high. At large growth rates one has a situation where the step
velocity starts to be on the order of the sound velocity. In this case, the
classical picture of spiral growth breaks down. We have studied the growth
of c-facets under such conditions and found clear deviations from the
classical behavior. We present a model which is able to account for the new
features of the spiral growth.

Before the present experiments, performed at temperatures 2-250 mK,
the only observed growth modes of facets were the thermal nucleation of
terraces and the spiral growth induced by screw dislocations.9 We have
now been able to nucleate and study crystals which do not have any screw
dislocations ending on the c-facet. In this situation the spiral growth is not
possible and the overpressure required for terrace nucleation becomes large
at low temperatures. In our work, however, two new growth mechanisms
were found in such crystals.

Minimum temperatures in optical investigations of solid 4He have
typically been limited to about 20 mK,12 because of a sizeable heat leak due
to infrared radiation through optical windows. By utilizing an inter-
ferometer with a cooled CCD-sensor we have now extended optical studies
of 4He crystals down to 2 mK. One of the main motivations of our work
was to study the growth of facets at mK-temperatures where the mobilities
of elementary steps were expected to be high. Moreover, we wanted to
monitor the crystal shape in order to look for new faceting transitions.

This paper is organized as follows: Sec. 2 describes the theoretical
background of the shape and growth of 4He crystals. A modified theory of
spiral growth, including the mass of a step and the decrease of step
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mobility at large driving forces, is described. We also discuss possible
effects of the critical velocities due to the Cherenkov emission of phonons
and rotons. The experimental setup is discussed in detail in Sec. 3 as well
as the methods for analysis of interferometric images and other topics of
experimental techniques. We give a detailed description of our measure-
ments13 on the c-facet growth in Sec. 4, covering both the spiral growth
and the growth modes in the absence of screw dislocations. The effect of
3He impurities on the growth was studied briefly by adding 3He to the
sample. We also present data on the growth of a-facets. In the end of Sec. 4
we describe our attempts to observe supersolid behavior as well as to see
freezing of kinks at the lowest temperatures.

Growth of 4He-Crystals at mK-Temperatures 1J9

2. THEORETICAL BACKGROUND

2.1. Equilibrium Shape of Crystals

The shape of a crystal is determined by the surface energy a. The total
surface free energy is

integrated over the surface S of the crystal. The minimization of E at con-
stant volume yields the equilibrium shape of the crystal. One obtains in the
1 D case

where a = a + d2a/dt2 is the surface stiffness, R ( r ) is the radius of curvature
at the position r, a is the lattice spacing and the supercooling force is
defined as3

Here Ap = p — peq is the deviation from the equilibrium liquid pressure peq

for a flat interface and R1 and Rs are the densities of the liquid and solid
phases, respectively.

The surface energy a may have a cusp when the angle 6 between the
surface and some lattice plane of the crystal becomes zero. This leads to a
discontinuity of the first derivative a' and to the appearance of atomically
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Fig. 1. (a) Vicinal surface, (b) Kinks on a step inclined by an angle
P with respect to a crystalline axis.

smooth planes, facets. This occurs at some characteristic temperature TR,
when thermal fluctuations become small enough. Since it is possible to
define various lattice planes in a crystal, there may be many faceting tran-
sitions; in principle one for every orientation, corresponding to rational
Miller indices. Thus, with decreasing temperature the surface of a 4He crystal
has an increasing number of facets which are connected by curved parts.

Three different facets have been found in 4He crystals. The first facet
observed was the c-facet (0001), the basal plane of the hexagonally sym-
metric 4He crystal with the highest critical temperature TRl = 1.3 K.4,14,15

When lowering the temperature further, six a-facets (1100) appear at
TR2 = 0.9 K.4, 15 Below TR3 = 0.3 K, s-facets (1101) are formed between the
c- and a-facets.16 At lower temperatures, more transitions are expected to
exist but these, however, have not yet been observed.

A surface, which is tilted by a small angle 0 with respect to a high
symmetry axis, is important in understanding the basic properties of crystal
surfaces. These so called vicinal surfaces consist of atomically smooth
terraces separated by transition regions, steps. In a step the surface height
changes by one lattice spacing a over the step width W, as shown in
Fig. la. The free energy of a step per unit length, B, has been measured for
c-facets by Rolley et al.12 who obtained, at temperatures well below 1 K,
B/a= 1.1 • 10 - 2 erg/cm2 which is pertinent to our experiments with helium
of natural purity. When the inclination angle 9 becomes large enough, so
the distance between steps becomes on the order of their width, it is not
possible to define separate terraces any more. In this limit, the interface
state is called atomically rough.

The concept of steps and terraces is also useful when the properties of
facets are considered. Equilibrium size of a facet, for example, depends on
the step energy B and on the supercooling force F. This can be seen by con-
sidering the energy of a new layer on the facet. For a horizontal c-facet,
neglecting gravity, the energy of a disc with radius R is
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For a facet in equilibrium one obtains the radius

If the supercooling force is determined by the curved part of the crystal
with the radius of curvature Rr so that 2Rr ~ D, the size of the crystal, then
R e q /D ~ (B/a)/a~0.05. Hence, the c-facets are expected to cover only small
sections of the crystal interface. On large crystals with smoothly curved
rough parts the c-facets become large. For example, Ap ~ 1 ubar corre-
sponds to a facet with the diameter of ~ 0.5 cm.

The facet, on the other hand, collapses below a critical facet size. The
maximum energy of Eq. (4) is obtained at the critical radius

which corresponds to a local metastable state, where the supercooling force
is balanced by the line tension. When the radius R < Rc the facet collapses
whereas above Rc the facet continuously expands towards Req. However,
one should notice that, in order to reach the equilibrium size, vertical
movement of the horizontal facet is needed. If the facet is not able to move
vertically, it expands sideways until the supercooling force is balanced by
step-step interactions at the edge of the facet which then has a metastable
radius.

Similar to a vicinal surface, a step may be tilted by an angle P with
respect to a crystalline axis, if it has "kinks" at which it shifts by one lattice
spacing as shown in Fig. 1b. There exist kinks of two signs according to the
direction of the change on the step. In classical statistical mechanics kinks
may be considered as point defects, thermally excited on linear steps
(strictly speaking, only pairs of kinks of opposite signs can be thermally
excited). A kink has an activation energy ek and a width ~ W of the tran-
sition region.3 The order of magnitude of the kink energy can be estimated
by assuming that the extra length of the step due to a kink is ~a2/W.3,12

Thus one obtains an estimate for the kink energy

Using W= 10a,12 we obtain Ek/kB = 10 mK.
A finite kink energy will influence the circumference of a facet. The

orientation of a step determines the number of kinks and, consequently, the



The ratio of ABmax to the step energy is ~0.05, which means that the
expected deformation of the facet shape is weak.

Note that the above picture neglects the effect of quantum delocaliza-
tion of point defects at low temperatures. Quantum-mechanical considera-
tions17 imply the possibility of zero-point kinks with exactly zero activation
energy.

2.2. Facet Growth of Helium Crystals

Atomically rough surfaces grow rapidly while facets grow slowly. This
difference reflects the difficulties in placing new atoms on atomically
smooth facets. Therefore, to induce growth, some mechanism is required
for the creation of sites where new atoms can stick to. One possibility is the
thermal nucleation of terraces. Near the roughening temperature thermal
fluctuations are big enough, compared with the potential barrier for the
creation of a new terrace in Eq. (4). The nucleation of terraces on c-facets
has been studied by Wolf et al. at the temperatures 1.13-1.25 K,9 and later
by Gallet et al.10 These temperatures were close to the first roughening
temperature TR1 — 1.3 K where B vanishes. They concluded that the thermal
nucleation of terraces explained their results on the growth of c-facets.

2.2.1. Classical Spiral Growth

At lower temperatures B increases while thermal fluctuations become
weaker. Therefore, the thermal nucleation of terraces is not effective any
more and one needs a new mechanism. This may be the classical spiral
growth, induced by screw dislocations. When going around a dislocation
line, the surface height changes by the length of the Burgers vector. Thus,
such a dislocation produces an elementary step on the facet (a pair of steps
of the same sign on a c-facet of an hep-crystal, since in this case the Burgers
vector is twice the step height a). Two screw dislocations with opposite
signs, joined by a step, form a Frank-Read source. When excess pressure
is applied, the step between the dislocation lines of a Frank-Read source
starts to bulge outwards. The step spreads around and behind the disloca-
tion lines until a complete new terrace has been created. This terrace starts
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change in the step energy AB(P). For a step with the length Ls, the number
Nk of kinks can be estimated as ( L s / a ) sin P (P > 0). Thus, AB(P) becomes
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Fig. 2. Spiral growth induced by screw dislocations.
Growth of a single dislocation under a small excess
pressure (a) and of a Frank-Read source (b). At
higher growth rates the dislocation winds around
itself to produce a spiral as shown for a screw disloca-
tion (c) and for a Frank-Read source (d) .

to expand over the facet as shown in Fig. 2b. At higher growth rates, the
step emerging from the dislocation becomes even more curved and finally
its shape becomes a spiral as shown in Fig. 2c and 2d.

A characteristic feature of the spiral growth is that the step in a Frank-
Read source doesn't move before the excess pressure Ap becomes bigger
than a threshold pressure Apc. This threshold is obtained from the force
balance acting on the step according to Eq. (6). The step starts moving
when the radius of curvature becomes smaller than half of the distance ld

between the dislocation lines. Using Eq. (6) with R = l d /2 , together with
Eq. (3), one obtains for the critical pressure18
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where AR = Rs — Rl. According to this formula the threshold pressure yields
the distance between the dislocation lines of a Frank-Read source. When
there are several screw dislocations of opposite signs ending on the facet,
the steps are formed between neighboring dislocations in order to minimize
their length and energy. Hence, a measurement of the threshold gives an
approximate value for the distance between neighboring screw dislocations
and, thereby, characterizes the quality of the crystal.



where d is the distance between the spiral arms (in the case of c-facets of
hep-crystals the value of v is two times larger). Since steps cannot cross
each other the growth of Frank-Read sources is not cumulative. On the
other hand, the time needed for a Frank-Read source to make one new
layer, T = d/vs, is not affected by the distance to other sources either. As
a result, the growth velocity of a facet does not depend on the density of
dislocations except for the threshold.

According to Eqs. (11) , (12) and (13) the facet velocity becomes
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In order to find the v vs. AP dependence of the spiral growth one has
to start from the force balance acting on a step (Eq. (6)) supplemented
with a term containing the frictional force in a steady-state situation19

where R ( r ) is the local radius of curvature and F is the step driving force,
which is identical to the supercooling force given by Eq. (3). The second
term on the left side includes the step mobility u defined by

where A is an eigenvalue of Eq. (10) The facet velocity v and the step
velocity vs of the spiral are connected by

The solution of Eq. (10) is a growth spiral with the asymptotic spacing19

This Ap2 dependence on pressure, together with the growth threshold, is a
distinct feature of classical spiral growth.

According to theoretical estimations, based on the concept of quantum
kinks and steps,17,20 the step mobility u may increase to infinity at low
temperatures. In other words, the step velocity may be very high even at
rather small driving forces. In our experiments facet velocities have been



measured to be on the order of v = 10 um/s with Ap = 2 ubar (see Sec. 4.3).
Using Eqs. (12) and (13) one obtains a step velocity of vs ~ 300 m/s. This
value is close to the sound velocity in 4He.21 Thus, it is obvious that
modifications have to be made to the regular theory of spiral growth. In
the following, we assume that steps on the facets of helium crystals are
essentially quantum objects, with a high density of zero-point kinks.

2.2.2. Modified Theory of Spiral Growth

Unlike in the classical theory of spiral growth, we have to take into
account the step inertia which dominates the equation of step motion,
when the energy dissipation is low. The step mass m comes mainly from the
kinetic energy of the superflow which transfers helium atoms from liquid to
the solid phase. With this modification Eq. (10) can be written as
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where m is the effective mass of a step per unit length, n is normal to the
step, and B*= B + mv2

s/2 denotes the step energy including the kinetic
energy; the term vs dv s /dn has exactly the same origin as a similar term
in the Euler equation of classical fluid mechanics. Note that we need to
use B* instead of B in order to make Eq. (15) consistent with energy
conservation.

At small driving forces F, the step mobility is some temperature-
dependent coefficient u0, defined by collisions of the step with phonons in
the liquid.20 At sufficiently large F, however, this process cannot provide
the necessary energy dissipation for a steady drift of a step, and a new
mechanism should be switched on, which then puts a limit to the step
speed. One of the possible mechanisms of this kind is caused by the
localization of kinks at large driving forces. Quantum kinks on a step were
originally introduced as narrow-band quasiparticles.17 Such particles may
drift in an external field only if there is a way to release their excess kinetic
energy. Since the movement of a step is governed by the motion of kinks,
the step may be localized by a strong external field, in accordance with
other low-dimensional quantum systems with narrow-band quasipar-
ticles.22 In the regime of localization, the step drift velocity can be
expressed as vs= 1 / ( n F ) where q is a new characteristic parameter of the
energy dissipation.

To obtain a rough estimate of the value of n, we have used a simple
model of a step as an one-dimensional lattice gas of quantum kinks of only
one sign. Kinks are quasiparticles with average density nk on the step
and the width of their energy band Ak<<®D, the characteristic Debye



temperature. Due to the nonzero difference Rs — Rl each kink moving along
the step produces a velocity field in the liquid v l(r) . The main term in the
kink-phonon interaction may be written in the form DRlv

2
l/2, where DRl is

the variation of the liquid density due to phonons. The energy transfer
from kinks to phonons is a result of inelastic kink-kink collisions with
emission of phonons, which can be calculated using the standard perturba-
tion theory. Assuming that in the regime of localization the step is "hot" as
compared with the phonon bath and that the average kinetic energy of a
kink is of order Ak) we obtain

where A is rather complicated integral, which can be estimated as A ~ 103.
Note that our model is certainly oversimplified (we neglect kink-kink
interactions, the creation and annihilation of pairs of opposite kinks, etc.)
and that it is able to give a rough estimate of n at best. Therefore, in our
analysis of Eq. (15) over different regimes we used the simplest interpola-
tion formula
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Within our rough model, a more accurate estimation of u in the inter-
mediate regime seems not to make real sense.

In the case of steady rotation at an angular frequency (a, the shape
of a spiral step in polar coordinates centered on the dislocation is given by
a function P(r) which must be regular at all r. The growth velocity of the
facet itself is governed solely by W since v = aw/2P. Stationary solutions of
Eq. (15) can be obtained, generally speaking, only numerically. However,
in all the special cases of interest this equation has simple analytical solu-
tions. The character of these solutions depends basically on the value of a
dimensionless parameter

At high temperatures, when u 0 < B n / m , this parameter is small (G< 1) at
all values of F and Eq. (15) yields
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This result recovers the regular F2 dependence at small F while it shows
saturation of the growth velocity at large F. In the opposite limit of low
temperatures there is a range of driving forces, u0n> 1 / F 2 > B n 2 / m ,
where G > 1. Then we obtain a linear dependence

while outside this domain we return to Eq. (19). The physical reason for
this unusual "inertial" growth regime is that the inertial terms dominate in
Eq. (15) at small r, where the step characteristics are formed; as a result the
growth velocity does not depend on the step mobility. In this case we have
a flow of energy from the center of the spiral to the facet border rather than
energy dissipation on the facet itself. If the facet size is large enough, the
step velocity eventually reaches its maximum velocity, defined by Eq. (11),
and the asymptotic spacing of the spiral arms becomes

Figure 3 illustrates the results of a numerical solution of Eq. (15) with
different values of the step parameters.

One more reason for nonlinear behavior of u might be caused by the
Cherenkov emission of rotons and phonons by a moving step, as its speed

Fig. 3. Numerically calculated v vs. Ap from Eqs. (13), (15) and (17):
u0= 1012scm/g (solid line), u0=101 1 s cm/g (dashed line) and u0 =
10'°scm/g (dash-dotted line) with n = 500 and m = 5 · 10 - l8g/cm.



where the additional friction K(VS) is practically zero below a threshold
velocity vc and increases very fast above it. In order to estimate this addi-
tional friction, we have calculated the flow of energy from a moving step
in the hydrodynamical approximation; the "weak coupling" model3 was
used to describe the profile of the step. The emission of phonons into the
liquid yields

where C is the correlation length which defines, in particular, the effective
width of the step as W=4C12 Numerical estimations show that this
"Cherenkov" friction may be very strong: kcu0> 1 above vc at all tem-
peratures below 0.3-0.5 K. The Cherenkov emission of phonons into the
crystal, due to elastic stresses produced by a step,23 gives an additional fric-
tion which is roughly of the same order. Finally, the roton contribution
may be written, within an order of magnitude, as
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exceeds the corresponding critical velocities (the roton phase velocity vr,
the sound velocity in the liquid cl or in the solid c s). In this case Eq. (17)
changes into

where Ar, p0 and mr are the energy gap, the momentum, and the mass of
a roton, respectively. Due to the exponential factor in Eq. (24) this con-
tribution appears to be very sensitive to the value of C and quite small
compared with Eq. (23): using C = 2a,12 we obtain P C p 0 / h ~ 3 8 .

It is necessary to emphasize here that radiation processes described by
Eq. (16) and Eqs. (23), (24) are quite different. The first type of radiation
is active when the step is hot, i.e., its internal degrees of freedom (kinks) are
hot as compared with the phonon-roton bath. In contrast, the Cherenkov
radiation appears even when a cold step as a whole is moving sufficiently
fast relative to the bulk liquid or solid.

In order to analyze possible effects of the above critical velocities, we
have studied the solutions of Eq. (15) obtained with a step mobility which
suddenly falls down to a very small value at some critical velocity vc. In



this case we have one more dimensionless parameter M = mv2
c/2B. If M> 1

or vc > Fu, where u is the step mobility below the threshold, the growth
velocity does not depend on vc and we return to the previous solutions, i.e.,
Eq. (19) or Eq. (20). If M<1 and u is sufficiently high, u >v c /F, we
obtain for the velocity

2.3. Supersolid

In addition to zero point kinks on the liquid-solid interface, solid 4He
may have zero-point excitations in the bulk. These bulk excitations, for
example vacancies, are supposed to form a Bose-condensate, a supersolid,
below a critical temperature Tc.

24-26 The supersolid transition is expected
to manifest itself as an anomaly in the melting curve, like the superfluid
transition in 3He. The difficulty is that the pressure variation due to the
Bose-Einstein condensation is extremely small at the expected density of
vacancies. The predictions for the slope of the melting curve across the
supersolid transition are26
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By comparing with Eq. (20) we see that the step mass and the step critical
velocity play very similar roles in the spiral growth, which makes the inter-
pretation of experimental data more complicated.

where R is the gas constant and nv is the density of vacancies participating
in the condensation. The critical temperature is

There are also other temperature-dependent contributions to the melt-
ing pressure, for example due to 3He impurities. At low temperatures the
impurities behave as an ideal gas governed by the usual equation of state
pV=n 3 RT. Taking a derivative one obtains Ap/dT = n3R/V. Using a typi-
cal 3He concentration 10 - 7 one obtains 0.4 ubar/K, which, however, is
beyond the resolution of our pressure gauge (see Sec. 3).



3. EXPERIMENTAL TECHNIQUES

3.1. Experimental Setup

A schematic illustration of our two-beam optical interferometer is dis-
played in Fig. 4. Coherent illumination is produced using a He-Ne laser,
located at room temperature. The light is focused to a single-mode optical
fiber that goes via the He-bath and enters the vacuum can of the cryostat
through a Stycast 1266 feedthrough. The beam is expanded with two lenses
to a parallel beam which is taken with a pair of mirrors vertically through
the sample cell. Most of the light passes the top and bottom windows of
the cell and the sample itself, after which the illumination is guided out of
the coldest parts of the cryostat. This light is absorbed by a black surface
thermally anchored to the still. About one ppm of the light is reflected from

Fig. 4. Experimental setup.

J. P. Ruutu et al.130



the liquid-solid interface and ~100ppm from the anti-reflection coated
reference surface on top of the lower window. These two reflections inter-
fere with each other and they are focused to a cooled CCD-sensor.

We use a slow scan CCD-camera Star 1 which takes 12-bit grayscale
images.27 The sensor has to be kept around T=60 K in order to maintain
the mobility of charge carriers. Two thermal filters have been installed in
front of the sensor to eliminate thermal radiation. The image is read from
the sensor to the control unit of the camera and transferred to a computer
for storage and digital image processing. The control unit has a memory
for one 12 bit image of the size 576(H) x 384(V) pixels.

Pressure inside the cell is measured using a capacitive gauge of Straty-
Adams type,28 installed on the nuclear stage of the cryostat. The gauge,
made of BeCu, has a membrane with the diameter of 9 mm and the thick-
ness of 0.3 mm which is less than the thickness of 1 mm used in the con-
ventional design.28 The gauge is connected to the liquid volume of the
cell using a CuNi-tube of 1 mm in diameter. The pressure sensitivity of
the gauge is 6 pF/bar. The capacitance is measured using a commercial
capacitance bridge29 which yields a pressure resolution of 0.3 ubar.

The sample cell, made of copper, is installed 10 cm above the top plate
of the nuclear stage in order to fit a mirror below. The inner diameter of
the cell is 17 mm and its height is 18 mm so that the experimental volume
is 4.1 cm3. The top and bottom of the cell are optical-grade fused silica
windows which have anti-reflection coatings on both surfaces. The upper
window is tilted by 2° with respect to the cylinder axis in order to prevent
light reflected from it to reach the CCD-sensor. For the same reason the
bottom window is a wedge aligned so that only the reflection from its
upper surface, used as the reference plane, hits the sensor. The optical
volume is connected to the top of the nuclear stage with a filling tube
having an inner diameter of 4 mm. Built into the top of the nuclear stage
we have a sintered silver heat exchanger with the nominal surface area of
114 m2 for cooling down 4He. The cell is connected to the nuclear stage
with three supporting legs, one of which provides good thermal sinking via
a conical contact surface.

The thermal time constant T = RC = C/K of the experimental setup was
estimated in order to approximate the minimum temperature of the sample.
The heat capacity of 3He impurities, C3 = (3/2) x3R J/K, dominates below
20 mK. Here x3 = 10-7 is the concentration of 3He within the commercial
4He that we used for our experiment. The heat conductivity of the 4He
liquid phase can be written as Kl= 525 T3 W/Km.30 On the other hand,
above the Fermi-temperature (TF = 0.05 mK with x3 = 10 - 7 ) one obtains
for 3He impurities K3 = 3.8 · 10-4T1/2 W/Km. Above T ~ 3 m K the liquid
4He starts to dominate the heat conductivity while at lower temperatures
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Eqs. (28) and (29) show that the crossover between the two time constants
occur around T~ 3 mK being around T ~ 5 s.

The main heat leak to the sample comes from the illumination which
is absorbed by the windows and transferred to the sample. We estimate
that the illumination used at the lowest temperatures produced a heat leak
of Q ~ 0.02 nW. Using the thermal conductivity of the tube connecting the
cell and the heat exchanger, we obtain a cooling capacity corresponding to
this heat leak at T = 2 mK. Hence, according to the estimations of the
thermal time constant T and the heat leak Q, we can expect the minimum
temperature of the sample to be about 2 mK.

Temperature was measured either using a carbon resistor in the mixing
chamber (T = 20-300 mK) or using a Pt-wire NMR thermometer installed
on the top flange of the nuclear stage (T= 0.3-70 mK). The basic heat leak
to the nuclear stage was around 30 nW and the pulsed illumination gave
0.02-6 nW extra depending on the pulsing frequency.

The fill line of the sample cell was connected to a room temperature
ballast volume of 100 cm3. The temperature of the volume could be con-
trolled using an electrical heater. By driving a sinusoidal current through
the heater we were able to grow and melt the crystal periodically. The tem-
perature of the ballast was measured using a Pt 100-resistor. Typically the
ballast was operated between 30-80° C. To ensure as fast cooling as
possible the ballast volume was cooled with air flow.

3.2. Analysis Methods for Interferograms

In order to measure very small speeds of a growing c-facet we utilized
the following method. First we imaged a small part of the facet at constant
time intervals. From the image we resolved the phase of the interference
lines utilizing a Fourier analysis method described by Kostianovski et al.31
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the 3He impurities conduct better. Multiplying these values by A/l~ 10 - 3 m,
where A is the cross-section of the filling tube between the sinter and the
cell and / is its length, one obtains the thermal conductivity of the liquid
column. Hence, the time constant above a few millikelvin is

and for the temperatures below



Since the phase changed with the position of the c-facet, the trace of the
facet height was obtained as a function of time. This method allowed us to
measure growth rates of the facet down to 0.01 nm/s.

The Fourier analysis is illustrated in Fig. 5. First a background picture
is subtracted from the raw image in order to make the interference lines

Fig. 5. Phase analysis using Fourier transformation in 2D. (a) An image g ( x , y).
(b) Fourier-transformation G(u, v) of g(x, y) showing the real (upper) and
imaginary (lower) components, (c) One of the side maxima is filtered with a
Gaussian filter, (d) The side maximum is transferred to the center of the image,
(e) An inverse Fourier-transformation yields g'(x, y). (f) The reference g'0(x, y).
(g) The result of the complex division g'/g'0. The upper image is the amplitude
c(x, y) and the lower one is the phase component AP(x, y). (h) . The middle of the
phase is averaged to obtain the phase difference. See text for more details.
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more clear (a). The background is obtained taking several pictures from a
growing or melting crystal with varying positions of the interference lines.
Averaging these pictures one obtains an image containing the background
without interference lines. The starting point for the analysis is the back-
ground-subtracted interferogram which, owing to straight interference lines
along the y-axis, can be written as
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where w0 = 2P/L is determined by the spacing L of the interference lines,
a(x, y) is a term coming from inhomogeneities of the optics and b(x, y) is
the spatial variation of the interference lines owing to the same reason. The
y-axis has been chosen along the interference lines as seen in Fig. 5a. In an
ideal situation the functions a and b would not depend on the position
(x, y), but this is not the case in our experimental images as seen in Fig. 5a.

The Fourier-transformation in 2D of Eq. (30) is given by

where P0(u, v) = F { e x p [ i P ( x , y ) ] } , A(u, v) = F { a ( x , y)} and B ( u , v } =
F{b(x , y ) } . The resulting image is complex with real (upper image) and
imaginary (lower image) components as shown in Fig. 5b; since the func-
tion g(x, y) is real, G(u, v) is symmetric. The central maximum is the zero-
order peak and the two side maxima are the first order peaks produced by
the interference lines. Next, one of these side maxima is selected. In order
to remove the higher order peaks and the zero-order peak, the image is
filtered using a Gaussian window W =exp{ — [(u — w 0 ) 2 + v 2 ] / 2 z 2 } posi-
tioned on the selected peak (c). The filtered peak is then shifted to the
origin: the same procedure is done with the imaginary component, Fig. 5d
shows the result. This filtered complex image is transformed by inverse
Fourier transformation in 2D yielding a complex image g'(x, y} as seen in
Fig. 5e. This whole analysis is repeated with another image, yielding
g'0(x, y) shown in Fig. 5f, which is used as a reference for the movement of
the interference lines. In order to find the movement of the interference
lines we perform a complex division

The amplitude component c(x, y) is shown in the upper image of Fig. 5g
while the phase difference AP(x, y) of the interference lines is shown in the
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lower image. Taking an average over the central area of AP(x, y) shown in
Fig. 5h, we obtain the phase difference of the lines APave and, consequently,
the movement of the facet from the formula

where L is the wavelength of the illumination.
Our camera has a feature which allows the imaging of a small area of

the sensor element instead of the whole array. The small images are stored
to the memory that is normally used for one full frame. As a result one
obtains a mosaic picture consisting of small images separated by a short
time interval. The advantage is that the imaging rate can be increased from
one picture every 9 seconds to one image every 0.4 seconds. We took typi-
cally sequences containing 198 images of 32 x 32 pixels. These mosaic
images were analyzed in a Macintosh computer using a commercial image
processing software IPLab produced by Signal Analytics.32 The subtraction
of the background was made manually since the best lines were obtained
by testing several different backgrounds. After this the first frame of the
mosaic image was selected as the reference and the phase difference of the
interference lines in the rest of the frames was extracted automatically using
the Fourier analysis method. The processing of a typical mosaic image
took about 20 minutes using a PowerMacintosh 7100 computer. The
results obtained using this method for small growth rates are discussed in
Sec. 4.2.

3.3. Calibrations for Mobility Measurements

It is not possible to use the interference lines for measuring movement
of the c-facet at high growth rates. If the facet height changes between the
successive frames by more than A/2, one loses the count of the lines. Thus,
at growth rates higher than v~0.5//m/s, we employed the hydrostatic
pressure to measure the growth rate of the c-facet. As the height of a
horizontal c-facet changes with Ah, the liquid pressure in the sample cell
changes by

where Rl is the density of the liquid. However, during growth one has also
a driving pressure Ap applied to the sample cell. Therefore, the pressure
measured with the gauge is



These two components have to be separated from each other in order to
obtain the facet mobility at the driving pressure Ap.

The functional form of the applied mass flow was calibrated when the
cell did not contain any solid. The sinusoidal current of the ballast heater
produced in the cell a periodically changing pressure which had a slightly
steeper increasing than decreasing part. This distortion from a pure
sinusoid was growing with the increasing drive amplitude. We found that
the mass flow and consequently Aph due to the changing hydrostatic
pressure was described well with a "tilted" sine-wave of the form

Fig. 6. Pressure APg of the sample as a function of time I
measured with the capacitive gauge during periodic growth and
melting of the c-facet at T= 20 mK; the change of the facet
height is 2 mm. The zero of Apg is fixed to the minimum
pressure over the period. The solid curve shows the fitted hydro-
static pressure Aph according to Eq. (36) using filled circles. The
parameter a, used for the fit, was obtained from the calibration.
The dashed line indicates the linear fit to Aph over the shaded
time interval which yields the facet velocity v according to
Eq. (34).
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where A is the amplitude, / is the frequency of oscillation and a is a
parameter determining the amount of distortion. We calibrated a at dif-
ferent amplitudes of the periodic drive and used then these values in our
analysis. At the largest drive we had a = 0.17.

Figure 6 illustrates the mobility measurements. We made a fit of Eq. (36)
using a fixed a (from the calibration) and f (the drive). The amplitude A
was a free parameter of the fit. The fitting points were on the decreasing



parts of the oscillation as shown with filled circles. As seen from the figure
it is possible to fit Aph well to the measured data.

The velocity v of the c-facet was determined from a linear fit to the
middle part of the increasing pressure Aph as indicated in Fig. 6 with a
dashed line. The driving pressure AP was obtained during the same time
interval, marked with a shaded background in Fig. 6, as an average over
the difference Apg — Aph, i.e., over the gap between the fitted Aph and the
measured points. Typically we measured and averaged over ten cycles. The
variation of both the pressure and the velocity, obtained during different
cycles, was typically less than 5%. The accuracy of the fits according to
Eq. (36) was improving with a growing drive and with increasing tempera-
ture, because the bulge in the driving pressure AP became more prominent.
For example, at T= 200 mK the variation of the pressure was less than 1 %
while the variation of the velocity was less than 2%.

3.4. Velocity Measurement of a-Facets

The crystal used for the a-facet studies was the same as in the c-facet
measurements having the c-axis parallel to gravity. The crystal was melted
so that its edge was seen in the field of view of our CCD-camera. In this
orientation a-facets are seen from the side as straight parts of the crystal
edge. No interference lines were obtained from the a-facets.

The speed of the facet can be measured by tracking the position of the
facet edge as a function of time in this configuration. At temperatures
below 20 mK, the images were obtained every 7.2 seconds while at higher
temperatures they were taken with the time interval of At = 3.8 s. The
length of the illuminating pulse was 15 ms. The image was recorded using
a VHS-video recorder connected to the monitor output of our digital
camera. During the time interval between successive snapshots the video
output shows the previous image which is stored in the memory of the
camera controller. Thus, the recording consists of a semi-continuous video
updated after a new image has been acquired. This video recording had a
resolution and sensitivity good enough for tracing the edge which was seen
as a clear black line. However, one should notice that the video signal,
corresponding to an 8-bit grayscale at most, is not good enough for
reproducing the interference lines used in the c-facet measurements.

The position of the facet edge was determined from a still picture on
the monitor. The measurement was made with the help of a millimeter
scale on the screen. The position was read with an accuracy of 0.5 mm on
the monitor corresponding to a position of the a-facet with 25 um error.
This method was found accurate enough since the quality of the video
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recording was the limiting factor and digitization of the image did not
increase the accuracy.

3.5. Addition of 3He Impurities

Our measurements on crystal growth were performed using regular,
commercial 4He with the nominal purity of 10 - 7 . In order to check the
effect of 3He impurities we added first 0.5 cm3 of 3He (NTP) corresponding
to about 10 ppm. Later the amount of impurities was increased to 50 ppm
by inserting 2.0 cm3 more of 3He. The extra 3He was inserted to the ballast
volume while the cryostat was cold since we wanted to keep the same crys-
tal seed as in the measurements with regular 4He. This ensured that we
were able to compare the properties of exactly similar crystals before and
after the insertion of additional 3He. As seen in the results of Sec. 4.4, the
addition of a small amount of 3He made a big difference in the growth
properties of our crystals.

The main problem was to get 3He impurities down the filling line to
superfluid 4He. Once 3He has reached the superfluid phase, the impurities
are expected to move to the experimental volume relatively fast due to the
"heat flush" effect. To achieve this we first reduced the size of the crystal
to get as much 4He gas as possible to the room temperature ballast volume
which contained the added 3He. Next we warmed the ballast by about
40° C, thereby driving 300 cm3 of gas (NTP) from the ballast volume to the
filling capillary. We estimate that about 250 cm3 of gas (NTP) should go
through the filling line over to the superfluid phase inside the pot heat
exchanger. Repeating this procedure about 10 times we should get most of
the 3He transferred to superfluid 4He.

One should bear in mind that we were not able to measure directly the
concentration of 3He in the sample cell. Hence, the given concentrations
should be considered as rough estimates, not exact figures. As pointed out
by Rolley et al.,33 a large amount of 3He atoms may reside trapped on
vortex cores inside the sintered silver heat exchanger. In our experiments
the ratio of the cell volume to the sinter area is close to that of Ref. 33 and
similar modification of the impurity concentration can be expected. Using
a mean distance of 3 nm between 3He atoms inside vortex cores we
estimate that nominal impurity concentrations up to 0.4 ppm can be fully
absorbed by our silver sponge. Hence, our original 0.1 ppm purity may be
strongly reduced whereas the higher concentrations should be practically
uninfluenced. Another problem is of course the distribution of impurities
in the liquid phase. Since 4He superfluid moves towards warmer areas,
thermal gradients can change the distribution of 3He between the different
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parts of the filling line, the heat exchanger inside the nuclear stage, and the
sample cell.

3.6. Techniques with Small Crystals

We studied the shape of the c-facet in crystals either partly or in some
cases completely detached from the cell walls. It turned out that the
presence of a crystal edge in the image decreased the quality of our pic-
tures, and especially the contrast of the interference lines obtained from the
c-facet. This was due to the strongly curving part at the crystal edge which
produced some very bright and dark areas in the image. Since the dynamic
range of the camera is restricted and the interference pattern is weak, it is
difficult to get interference lines with strong contrast. Hence, the observa-
tions on the shape of the c-facet were difficult to make with good accuracy.
This situation is clearly different from our earlier measurements on the
facet edge34 because in those measurements the rough surface curved only
by a few milliradians from the facet while in the present case the edge of
the crystal bends about 100 times more.

Some observations were also made on small crystals without any con-
tact with the walls. Typically, it was very difficult to get a crystal detached
from the walls. We tried to do this by tilting the whole cryostat. Unfor-
tunately, this process often produced some vibrations resulting in abrupt
pressure changes in the filling line and the crystal was destroyed. The
easiest way was to nucleate a new crystal and then try to drop it in the
middle of the cell. One has to remember, however, that we were able to
observe optically only an area with a diameter of about 6 mm while the
diameter of the sample cell was 17 mm. Thus, sometimes the crystal might
have been out of wall contact but it was not possible to verify this. Small
crystals were also difficult to maintain for longer times since pressure fluc-
tuations in the cell could easily destroy them or make them bigger, restoring
a contact to the wall. Therefore, we managed only a couple of times to
make brief observations on crystals located completely in the field of view
of our interferometer.

For static measurements at the lowest temperatures we used long
exposure times to reduce the heat leak caused by the absorbed light. The
observations on small crystals were typically made with light pulses on the
order of 100 s at a 10- 4 times weaker intensity of the illumination. This
should be compared with the usual 15 ms illumination pulses, applied once
every second in the dynamic measurements. Assuming that the energy AQ
absorbed during the exposure is the same, the heat leak Q is reduced by a
factor of 102 when using light pulses of 100 s.
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4. EXPERIMENTAL RESULTS

4.1. Nucleation and Orientation of Crystals

Our crystals were nucleated at 20 mK, in contrast to the commonly
used temperature of 0.9 K.35 No external electrical fields were employed to
enhance the pressure locally. A typical nucleation event is shown in Fig. 7.
Before time t0, the crystal melts at the melting pressure p0 with a gas flow
of n = - 10 umol/s. The crystal vanishes at t = t0, and at t = t1 the flow to
the ballast volume is stopped. This is enough to start to increase the
pressure in the cell, since the cold gas evaporated in the filling line warms
and expands. The overpressure p — p0 increases owing to the feed
n = 1 umol/s till the value p2 at t = t2 when the nucleation occurs, leading
to an abrupt drop in pressure down to a level p1. This jump dp = p2 — p1 ~
3.5 mbar is the overpressure required for the nucleation of a new crystal;
the value is close, but slightly smaller than those observed in previous
experiments on nucleation pressures.36,37 The hydrostatic pressure dif-
ference between levels p0 and p1 indicates that the new crystal nucleates
10 mm above the bottom of the cell. Finally, at t = t3, the crystal has
become big enough to drop to the bottom of the sample cell resulting again
in the pressure p0.

The nucleation site was history dependent: If the pressure was drop-
ped more than ~ 0.8 bar below the melting pressure, the next crystal was
nucleated at a new site. A statistical analysis was made on the nucleation
pressures. It was discovered that the pressures increased with decreasing
temperature down to 100 mK. Below 100 mK no temperature dependence

Fig. 7. Nucleation of a 4He-crystal. See text for details.
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was seen. Together with a statistical analysis of the distribution of pressures
this suggests that the nucleation process is governed by quantum tunneling
at low temperatures. A description of the study on nucleation pressures has
been published elsewhere.38

Crystals were aligned with their c-facet almost parallel to the reference
surface of the optical wedge by nucleating and dropping crystals until a
suitable one was obtained. Normally it took around 20 attempts to get a
crystal with the c-facet close enough to the orientation of the reference
surface to see interference lines. Once there was a suitable crystal seed on
the bottom, it was grown slowly (1 um/s) sideways to cover the whole
cross-section of the sample cell.

4.2. Growth of c-Facets Without Screw Dislocations

To our surprise, the growth of our freshly-nucleated crystals produced
pressure traces which could not be explained by spiral growth. Figure 8
displays the behavior of the pressure in the sample cell when the c-facet
grew at 20 mK. The pressure increases almost linearly up to some
instability value and then drops fast about 100 ubar in less than 1 sec. This
pressure drop corresponds, according to the compressibility of the liquid,
to the growth of the facet by 200-2000 layers.

It is obvious that this kind of pressure trace cannot be due to spiral
growth in which the pressure should first increase to a threshold level (see
Eq. (9)) and then stabilize to a value depending on the growth rate in the
experiment; in Fig. 8 the expected pressure would be below 1 ubar. We

Fig. 8. Deviation of pressure p from the equilibrium peq as a
function of time / during growth of a high-quality crystal
(v = 170nm/s).
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were able to decrease the overpressure dramatically for the facet growth by
producing a few dislocations above 200 mK as described in Sec. 4.3. Thus
it seems reasonable to argue that our crystals did not contain any screw
dislocations along the c-axis after the nucleation.

The absence of an electrical field together with the low nucleation tem-
perature was probably the reason why crystals without screw dislocations
along the c-axis could be obtained in our experiments. It is quite possible
that the nucleation capacitors, ordinarily used to enhance the liquid
pressure locally, produce inhomogeneous electric fields which give rise to a
small number of dislocations in the nucleating seed. On the other hand, the
small dissipation and the large interfacial mobility at our nucleation tem-
perature of 20 mK certainly contribute to the formation of homogeneous,
dislocation-free crystals.

4.2.1. Slow Growth

During the sections of increasing pressure between the instability
points in Fig. 8, we discovered a slow, continuous movement of inter-
ference lines using the Fourier method described in Sec. 3.2. In order to
study this slow growth regime quantitatively, we measured the average
velocity using a constant pressure drive which was accomplished by
actively controlling the heating of the room temperature ballast volume.
Figure 9 shows traces of displacement Ah of the facet obtained at two
different driving pressures at T=50mK. The fitted lines correspond to
velocities v = 8.9 · 10-2 nm/s (Ap = 370 ubar) and v = 2.8 · 10 -2 nm/s

Fig. 9. Vertical displacement Ah of a growing c-facet as a func-
tion of time t at T= 50 mK, measured at the driving pressure of
Ap = 370 ubar (•) and Ap = 200 ubar (O).
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(Ap = 200 ubar). Note that the standard deviations of the fitted lines from
the data are 3 nm and 2 nm, respectively.

The rate of the slow growth as a function of pressure is illustrated in
Fig. 10. Each point in the figure represents a Ah(t) measurement illustrated
in Fig. 9. The measured speeds of the c-facet vary between 0.01 nm/s-
0.6 nm/s. The highest applicable pressures were limited by the instability
points. As can be noticed from Fig. 10, the velocities are decreasing with
increasing temperature. The scatter of the slow growth data comes partly
from the difficulty in regulating the overpressure at a fixed level and partly
from the linear fit. The pressure values in Fig. 10 were obtained as averages
of Ap over the total imaging time of the interference lines. Typical pressure
fluctuations were about +10% of the average value.

It is difficult to distinguish the functional shape of the v vs. Ap-plots
of the slow growth. There seems to be a certain resemblance with the
corresponding plots of the spiral growth which display a crossover from
Ap2 dependence to Ap dependence (see Sec. 4.3). Within our accuracy,
however, it is possible to make always linear fits using the equation

where uf defines a mobility for the slow growth. Using this linear
approximation we obtain the mobility as a function of temperature T as

Fig. 10. Slow growth of the c-facet without screw dislocations.
Temperatures: T = 2mK (O), 10 mK ( D ) , 20 mK (•), 50 mK
( V), 100 mK ( *), and 200 mK ( A ) . Solid lines are for guiding
the eyes.
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Fig. 11. Mobilities uf of the slow growth obtained from linear
fits to the data of Fig. 10. The solid curve is for guiding the eyes.

shown in Fig. 11. The mobility uf decreases by about a factor of ten when
temperature increases from 2 mK up to 200 mK.

The theoretical explanation of the slow growth is largely open. One
clue can be the similarity to the spiral growth data (compare Fig. 10 with
Fig. 18) even though the velocities of the two growth modes differ by many
orders of magnitude. In both cases the low temperature data below 50 mK
seem quite linear while at higher temperatures quadratic behavior is
followed more or less. One possibility is some kind of a surface reconstruc-
tion which could provide exceedingly massive and less mobile steps instead
of the normal ones. According to Eq. (15) this would decrease the speed of
a step.

4.2.2. Burst-Like Growth

In contrast to the slow growth, the crystal can grow by creating new
atomic layers abruptly in a burst-like manner as illustrated by the p vs. t
trace in Fig. 8. This kind of behavior with distinct instabilities takes place
at average velocities v > 1 nm/s when the crystal is growing at a fixed rate
of mass flow.

Figure 12 shows cumulative distributions of instability pressures at
eight different temperatures between 2 and 250 mK. The instability pressures
are sorted from the smallest to the biggest and then their ordinal number
is plotted as a function of the pressure; thus the distributions indicate the
number of instability events below the pressure Ap. The burst-like growth
depends strongly on temperature, as Fig. 12 shows. The distributions were
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Fig. 12. Cumulative distributions of instability pressures of the
burst-like growth. Temperatures from left to right are 2 mK,
50 mK, 100 mK, 150 mK, 180 mK, 200 mK, 210 mK, and
250 mK. See text for solid lines.

where N0 is the total number of nucleation events. The nucleation rate
w(Ap) is of the form w I exp(— B q /Ap 2 ) in quantum nucleation and
w I exp(— B t /Ap) in the thermal case.39,40 Within our experimental
accuracy, both formulas can be fitted rather well to the data; for example,
the solid curves in Fig. 12 are fits of Eq. (38) using the quantum nucleation
rate. As seen from the figure, the curves seem to fit the data quite well
suggesting some kind of nucleation mechanism behind the burst-like
growth. Note that the measured temperature dependence of the nucleation
pressure is opposite to that expected for thermal nucleation. This is why we
prefer the formulas of quantum nucleation to those of thermal activation in
our fit.

The magnitude of the instability pressures and the asymmetry of their
distributions in Fig. 12 are growing with temperature. The circles in Fig. 13

measured with the average interfacial velocity of 200-300 nm/s, but no
variation as a function of speed was observed in the range 100-600 nm/s.

It is possible to fit the overall shape of the pressure-dependent, statistical
nucleation formula to the measured data.38 Assuming a linear pressurization
rate Ap(t) ~ ct one obtains the cumulative distribution
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Fig. 13. The median instability pressure (O) of the burst-like
growth as a function of temperature. The squares (D) show the
median pressure after the nucleation of new layers. Solid lines
are for guiding the eyes.

show the median value of these distributions as a function of temperature.
The median overpressure increases by a factor of four with the increasing
temperature from 20 mK up to 250 mK. Above 250 mK we were not able
to obtain enough data since the pressurization quickly resulted in an over-
pressure Ap > 3 mbar which created screw dislocations along the c-axis on
the facet, destroying the burst-like growth mode.

Another characteristic feature of the burst-like growth is that the
restabilization pressure, i.e., the value of Ap at which the rapid nucleation
of new layers ends, depends strongly on temperature as well. The
restabilization pressures form a symmetric distribution which is fairly close
to an integral error function as shown in Fig. 14. The symmetric distribu-
tions are in clear contrast to those of the instability pressure (see Fig. 12).
This suggests that the pressure after the abrupt growth is governed by a
random process. The distributions become wider at higher temperatures.
The median pressure is also increasing with the temperature by a factor of
five as shown in Fig. 13.

The understanding of restabilization pressures is somewhat com-
plicated by the clear undershoot in pressure, seen before the linear increase
is regained (see Fig. 8). The time scale of the undershoot (T~ 0.5 s) is much
longer than what we would expect for sound waves in our experimental
setup (T~ 1 ms). The data presented in Fig. 14 has been obtained by
neglecting the undershoot in the analysis.
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Fig. 14. Cumulative distributions of the pressure after the burst-
like creation of new layers. The temperatures from left to right:
T= 2 mK, 100 mK, 200 mK, and 220 mK. The solid curves are
fits of integral error function.

4.3. Spiral Growth

Spiral growth was investigated in crystals with a small density of dis-
locations (ns = 5-100 cm- 2) . Dislocations were generated by growing the
crystal horizontally at a few hundred um/s or vertically at about 1 um/s at
T~200 mK. The creation of dislocations was seen as a dramatic drop in
the overpressure Ap down to about 1 ubar, which corresponds to the
threshold of the spiral growth with a small density of dislocations.
Moreover, it was possible to eliminate the dislocations by melting the
crystal below its size in the original creation process, thereby restoring the
burst-like and slow growth modes.

Figure 15 shows an example how the growth threshold is observed dur-
ing sinusoidal growth and melting on one of our crystals. In the beginning
there is a region marked with S where no movement of the interference
lines is observed. When the overpressure reaches 2 ubar the lines start to
move indicating growth of the facet just above the threshold. This
threshold pressure stays the same during the periodic growth and melting,
which means that the number of dislocations doesn't change during our
growth rate measurements.

To infer numerical values for the threshold we have employed the
minimum pressure during one period as the reference pressure peq. Within
our resolution this value coincides with the equilibrium pressure. Using
Eq. (9) one obtains that the smallest (largest) measured threshold 0.5 ubar
(2 ubar) corresponds to a density of dislocations ns = 5 c m - 2 (100cm- 2) .
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Fig. 15. The pressure in the cell during one period of sinusoi-
dal growth and melting of the c-facet measured at T=20mK
in a crystal with ns = 50 cm - 2 . Regions of motion (M) and of
non-motion (S) of the facet are inferred from 32 x 32 pixel
snapshots. At point P the interface starts to move indicating
that the threshold pressure of the spiral growth has been
exceeded. The amplitude of the facet movement is 0.5 mm. The
solid line is a fit of Aph according to Eq. (36).

The minimum value is smaller by an order of magnitude than the pre-
viously reported densities.12,41 However, one has to bear in mind that the
measurement of the growth threshold might be less sensitive to the density
of other defects in the crystal, e.g., edge dislocations.

Figure 16 illustrates how the movement of the interference lines is
easily seen from the interferograms. In the upper row there is a series of
images of the size 32 x 32 pixels taken with the time interval of At = 0.93 s
at T=20mK. The lower row shows images obtained by subtracting two
successive frames of the upper row. The subtraction of the first and the
second frame shows no lines, meaning that the interference fringes and the
c-facet have not moved between the snapshots. However, between the
second and the third frame of the upper row the lines have shifted which
is seen as a set of fringes in the subtracted image.

The difference between the measured pressure Dpg and the fitted
hydrostatic pressure Aph (see Fig. 15) depends strongly on the speed of the
c-facet and on the temperature. Figure 17 shows pressure traces measured
at T= 100 mK with six different amplitudes of oscillation corresponding to
facet velocities v = 8-74 um/s. With increasing drive the threshold is
exceeded sooner which is seen as the movement of the curves to the left.
Since the bulge due to the difference between Dpg and Dph increases with
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Fig. 16. Upper row shows 32 x 32 pixel images taken with the time
interval Dt = 0.93 s. Lower row shows images obtained by subtracting
two successive frames of the upper row. In the first image on the lower
row there are no interference lines, while the second subtraction con-
tains visible fringes indicating that the facet has started to move
between second and third frame of the upper row.

the drive, it is easier to measure the velocity and the corresponding driving
pressure at large speeds.

Figure 18a shows the velocity v of a c-facet as a function of over-
pressure Dp at different temperatures. The data of Fig. 18a between
T= 100-200 mK can be fitted quite well with the classical Dp2-dependence
up to velocities 30 um/s by using Eq. (14) with a double-step. In contrast,
at lower temperatures T < 20 mK the pressure dependence is almost linear.
In both cases there appear deviations at high velocities from the small
speed behavior. These effects are explained in the theoretical part (see
Sec. 2.2.2) on the basis of the theory for spiral growth which takes into
account the mass of steps and the localization of kinks. We obtain from our
low temperature data, using Eq. (20), a step mass of m = 4-5 • 10-18g/cm
which is in a good agreement with the theoretical value m = 5-7 • 10 - 1 8

g/cm.20,42,43 The solid lines in Fig. 18a are fits of Eqs. (15) and (17)
obtained using u0 as a fitting parameter at constant n = 4.3·102 and
m = 5 · 10 -18 g/cm. As seen from the figure our new theory on spiral
growth is able to explain all our experimental data. This is also supported
by the good agreement between the obtained step mobility and the
theoretically calculated value (see below).

149



150 J. P. Ruutu et al.

Of special interest is the value of n which is closely connected, according
to Eq. (16), to the basic characteristics of elementary kinks, viz. the width
of their energy band Dk. Assuming the density of kinks to be of atomic
order, nk = 107cm - 1 , we obtain an estimate Dk < 10 K which looks quite
reasonable in view of other, essentially quantum properties of the liquid-
solid helium interfaces (see, e.g., Refs. 1 and 44).

Fig. 18. (a) Velocity v of the c-facet as a function of the driving pressure Ap for a
crystal with the dislocation density ns = 5 cm - 2 : T=2 mK (O), 20 mK (•), 50 mK
(V) , 100 m K ( * ) , 150 mK (O), 200 mK (A) and 250 mK (T) . (b) An expanded
view of the low temperature data. The symbols are the same as in (a). See text for
the solid and dashed lines.

Fig. 17. Pressure Dpg during periodic growth and melting of the
c-facet shown at different oscillation amplitudes at T= 100 mK.
Notice the enhancement in the size of the bulge indicating an
increase in the driving pressure Ap. The threshold pressure is
Apc = 0.5 ubar.



The velocity data at T = 2-50mK are shown in Fig. 18b on an
expanded scale. Deviations from the theoretical fits (solid curves) are quite
strong at high growth rates and at low temperatures. It is possible to make
better fits if n is increased. The dashed lines in Fig. 18b show fits obtained
using n as a fitting parameter: n = 960 at T= 20 mK and n = 750 at
T=50mK. Similarly, it is possible to make better fits at higher tem-
peratures using n < 400. Such a temperature variation of n, if it really exists,
looks quite natural from the point of view of the theory in Sec. 2.2.2: In the
beginning of the regime of localization, the step is not as "hot," as it is
assumed in Eq. (16), and first with increasing temperature of the phonon
bath the average energy of quasiparticles becomes large enough (~D k ) .

The tendency towards saturation supports the interpretation based on
the step inertia, since in the case of Cherenkov radiation the facet velocity
should grow linearly. However, the deviation between solid curves and the
data at low temperatures may also be due to the heating of the sample
caused by the large speed of crystallization during the measurements.
A moving interface introduces a heat production rate
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where Dp is the pressure over the interface and S is the surface area of the
facet. Using the values v = 50 um/s and Dp =10 ubar one obtains
Q = 1 nW. This is large compared with the thermal conductivity of the tube
connecting the sinter and the optical cell at low temperatures (see Sec. 3.1).
Assuming that the mechanical work done by the moving interface is com-
pletely irreversible and that the heat goes to the liquid, one finds that the
sample warms up from 2 to 7 mK during such a motion. Thus the sample
is expected to warm up at large amplitudes of oscillation leading to devia-
tions from the theoretical curve. At high temperatures, the thermal conduc-
tivity of the liquid increases and the heat leak due to the moving interface
is not significant any more. This is why we prefer to use in the analysis of
the experimental data just an average value of n instead of a temperature
dependent function, which doesn't seem to be very reliably determined
under our experimental conditions.

The step mobility u0 is shown in Fig. 19 as a function of temperature.
This was obtained from the calculated fits to the data shown in Fig. 18a.
Figure 19 displays also the step mobility measured by Rolley et al.12 on a
vicinal surface with the inclination angle T = 0.3°. The solid curve is a fit to
data points of the form u0 ~ 1/Tn with the exponent n = 3.04 which is close
to the value n = 3.5 obtained by Rolley et al.12 at 0.1-0.2 K; our mobilities
are, however, a factor of five smaller than theirs.
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The temperature dependence of u0 is due to the scattering of thermal
phonons from moving steps. In a winding spiral, the spacing of the arms
d is much larger than L, the wavelength of thermal phonons. In this case,
the phonons are scattered incoherently from the steps and the mobility
becomes u0 I 1/T3; for coherent scattering u0 I 1/T4 .2 0 Taking into

Fig. 19. Mobility u0 (O) as a function of temperature T obtained
using u0 as a fitting parameter in Eqs. ( 1 5 ) and ( 1 7 ) with n = 430 and
m = 5- 10 - 1 8g/cm. The solid line is a fit of u0 I 1/T11 where n = 3.04.
The mobility obtained by Rolley et al. for a vicinal surface with 0.3°
inclination angle is shown by open squares.

Fig. 20. Velocity v of the c-facet as a function of the driving pres-
sure Dp at T = 20 mK for a crystal with (•) 5 dislocations/cm2

and (O) 50 dislocations/cm2. The points at v = 0 show the thresh-
old pressures obtained from the interferometric measurements.
The solid and dashed lines are for guiding the eyes.
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account the uncertainty of the data points at the lowest temperatures, the
measured exponent n = 3.04 is in an excellent agreement with the expected,
incoherent scattering with n = 3. The absolute values of the mobility at
temperatures 100-200 mK, where it was measured with higher accuracy,
agree well with theoretical estimations.20

The measurements on the spiral growth were mainly done at our
smallest dislocation density of 5 c m - 2 , but some data were taken also at
a higher density. Figure 20 illustrates the v vs. Dp plots measured at
T=20mK in crystals having 5 and 50 dislocations per cm2. The figure
shows that, as expected, only the threshold is changing since the speed
of spiral growth is governed by the winding rate around the individual
dislocations.

Fig. 21. The effect of 3He impurities on the slow growth at
T = 20 mK with 0.1 ppm(C) , 10 ppm(*)and 50 ppm (•) of 3He
and at T=200mK with 0.1 ppm ( D ) , 10 ppm (O) and 50 ppm
(• ). Solid lines are just to guide the eyes.

4.4. Effect of 3He Impurities

In order to check the role of 3He impurity atoms on our growth
phenomena, especially on the slow growth of facets in the absence of screw
dislocations, we investigated samples where the amount of 3He impurities
was increased by a factor of 100/500 with respect to the initial natural
purity. Typically, the presence of 3He impurities slows down interfacial
growth rates.45 This was also the case in our measurements. Figure 21
illustrates the effect of impurities on the slow growth at T= 20 and 200 mK
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over the concentrations c3 = 0.1, 10 and 50 ppm. The overall effect is to
decrease the growth rate by a factor of three.

At T = 20 mK the increase of c3 from 0.1 ppm to 10 ppm was responsible
for most of the effect. However, at T = 200 mK, the increase of c3 from
0.1 ppm to 10 ppm yielded roughly a similar change as that when c3 is
further increased to 50 ppm. At T = 20 mK the whole change was slightly
bigger than at 200 mK. On the basis of these results we may conclude that
the presence of 3He atoms does not seem to lead to impurity assisted
growth processes where the impurity atoms on the facets would act as
nucleation centers for new atomic layers.

The effect of impurities on the burst-like growth at T = 20 mK and
200 mK is illustrated in Fig. 22; the cumulative distributions of instability
pressures have been scaled between 0 and 1. At both temperatures the
distributions are shifted towards higher pressures with increasing 3He
concentrations. At 20 mK the increase of the median pressure was 40 %
with the change of the impurity concentration from c3 = 0.1 ppm to 10 ppm
and 80% up to c3 = 50 ppm. At 200 mK the corresponding figures were
60% and 250% from the original median pressures. Thus, it is clear that
an enhanced amount of impurities is detrimental for the burst-like growth.

Altogether, the effect of 3He impurities is to slow down all the growth
modes investigated in this paper. This is similar to the studies of the growth
resistance on rough surfaces by Wang and Agnolet.45 As in their work, the
sensitivity of interfacial mobility on the amount of 3He impurities increases
with decreasing temperature. Hence, it would be very interesting to use
ultrapure 4He for studying different growth mechanisms of c-facets at the

Fig. 22. Cumulative distributions of the burst-like growth scaled
between 0 and 1 at three different 3He impurity concentrations.
Dashed lines show the distributions with the nominal 3He con-
centration of c3 = 0.1 ppm, solid thin lines with c3 = 10 ppm and
the filled squares with c3 = 50 ppm at (a) T = 20 mK and (b)
T=200 mK.



lowest temperatures. Moreover, since the spiral growth provides an almost
ideal geometry, i.e., well separated steps moving at a relatively large speed,
systematic investigations of the spiral dynamics in the presence of 3He
impurities might offer a good way to characterize both the step-impurity
interactions as well as the structure of the steps themselves.

4.5. Growth of a-Facets

We studied the growth of a-facets by measuring the position of verti-
cally oriented facets. Figure 23 shows two examples of such crystals imaged
at T=2 mK and 200 mK. A thin white line can be noted in Fig. 23a just
above the crystal edge which is seen as a thick black line. This white strip
is the contact line of the crystal to the bottom window. Typically the con-
tact line was seen during the a-facet measurements, which indicates that the
facet was not touching the bottom. However, at large driving pressures and
at high temperatures, when the mobility of the a-facet was smaller, the
contact line got closer to the crystal edge as the radius of curvature of the
rough part became smaller. Under these conditions the contact line was not
visible any more as shown in Fig. 23b except at the corners where two
a-facets meet.

The growth of a-facets was measured by increasing the heating of the
ballast volume step-wise and monitoring the position of the facet edge and
the pressure of the cell. Figure 24 shows the position of the facet edge as
a function of time during growth at T = 2 mK. A linear fit to the data
yielded the velocity of the facet while the driving pressure was obtained as
an average over the tracing of the edge.

Fig. 23. Edge of a 4He-crystal during growth showing two/three a-facets from the side:
(a) T=2 mK with Dp = 3 ubar and v= 18 um/s and (b) T=200mK with Dp = 31 ubar and
v= 11 um/s. The arrows indicate the a-facet monitored for the v vs. Dp -plot. The light area
is the illuminated part of the sample cell. The frame size is 7 x 6 mm2
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Figure 25 shows v versus Dp curves at different temperatures measured
for the a-facet. Even though the facets are now vertical and their properties,
like the step height and the step energy, are different from those of the
c-facets, we have tried to analyze our data by employing the same formulas
and parameters as in the case of c-facets. The solid lines are fits calculated
from Eqs. (15) and (17) for the spiral growth with m = 5 · 10 - 1 8 g/cm which
corresponds to the average of the values m = 2 —8 ·10-18 g/cm, obtained

Fig. 24. Position x of the a-facet as a function of time t measured at
T= 2 mK with the driving pressure Dp = 3.5 ubar. The solid line is
a linear fit yielding the velocity of the facet v = 9.4 um/s.

Fig. 25. Velocity v of the a-facet as a function of the driving
pressure Dp measured at T=2 mK (O), 20 mK (•), 50 mK
(V) , 100 mK (*), 150 mK ( O ) , 200 mK (A) and 250 mK ( A ) .
See text for the curves.
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using the mass as a free fitting parameter. Note that this is exactly the same
value as measured for the c-facet. However, it was not possible to make a
good fit below 50 mK with m = 5 • 10 - 1 8 g/cm. The fit at 50 mK, marked as
a dash-dotted line, was made using m = 2 . 1 0 - 1 8 g/cm. The fit at 20 mK,
indicated by the dashed line, was obtained with m = 2 .10 -20 g/cm but even
then the fit to the data was not good at low velocities.

Figure 26 shows the mobilities u0 of steps obtained from the fits of
Fig. 25 as a function of temperature. Mobility seems to saturate at low
temperatures but this may also be a result of the small mass used in the fit.
The solid line indicates a fit to mobilities at T= 50-250 mK giving
u0 ~ 1/Tn with the exponent n = 3.5. This value is close to that obtained on
the c-facet.

One can understand the above results taking into account that the
vertical orientation of the a-facets introduces a new factor to the growth:
the hydrostatic pressure is now changing along the facet. We were not able
to measure the thickness of the crystal directly, but we may estimate the
crystal height to be on the order of the capillary length h ~ 1 mm. Using
this value, one obtains a hydrostatic pressure difference Dph y d~ 10 ubar
across the facet. The step motion becomes much more complicated with
such an extra force. Since Dphyd is on the order of the driving pressure used
in the measurements below 50 mK, the theory of Sec. 2.2.2 is not applicable
to these data. At higher temperatures a typical driving pressure becomes

Fig. 26. Mobility u0 for steps on an a-facet (•) obtained from the
fits in Fig. 25. Solid line is a fit to the points at T= 50-250 mK
yielding u0~1/T3,5. The open circles (O) are the mobilities
obtained for the c-facet (see Fig. 19). The dashed line indicates the
fit u0~ 1/T3.04 to the c-facet data.



larger than the hydrostatic pressure difference Dp >> Dphyd and, conse-
quently, the gravitational effects are not important any more.

The threshold for the spiral growth of a-facets was not determined as
accurately as in the case of c-facets, since now the start of the facet growth
with respect to increasing pressure was not determined using inter-
ferometric fringes. An extrapolation of the data of Fig. 25 to zero growth
rate yields for the threshold ~3 ubar. This is several times larger than the
value observed for the c-facet. However, it can be shown that, in the
presence of Dphyd, the threshold for spiral growth exceeds its regular value
by a fraction of Dphyd which is dependent on the position of the dislocation
on the facet. On the other hand, the typical size of a stationary a-facet
(~ 1 mm) was quite small when compared with the size of a c-facet
(~ 15 mm). Thus, it is possible that the facet does not even contain a single
dislocation in a good quality crystal. The facet has to expand first sideways
in order to reach a screw dislocation. With these notions, the increased
value of the threshold for the a-facet seems reasonable.

4.6. Shape of a c-Facet at Low Temperatures

We tried to observe "freezing" of kinks by monitoring the facet
edge down to our minimum temperature, about 2 mK. This was performed
with a crystal partly detached from the side wall. Figure 27 shows a typical
image on an equilibrium crystal with the background subtracted away.

The crystal edge consists of two a-facets which are joined by a rounded
section. The crystal in Fig. 27 is different from the crystal used for the
growth measurements, which can be seen from the altered orientation of
the interference fringes (compare with Fig. 16). Our interferograms did not
show any clear changes in the shape of the c-facet. No obvious sharpening
of the facet corner was seen, which should take place if the anisotropy
energy of steps due to the kink energy would be essential (see Sec. 2.1). In
general, the facet edge seemed to follow the shape of the crystal edge, both
along the a-facets and along the curved corner.

Figure 28 shows the ratio B/A of the distances between the facet border
and the crystal edge in the middle of the a-facet and at the corner of the
crystal, marked in Fig. 27 by (B) and (A), respectively. The sharpening of
the facet edge should be seen as an increase of B/A. However, the measured
ratio only decreases slightly when the temperature is lowered. The ratio
starts to increase above T = 0.9 K because the a-facets disappear.

We made optical observations also on small crystals without any con-
tact to the walls of the sample cell. These crystals stuck quite easily to the
bottom of the cell. This was seen as a distortion of the crystals from their
hexagonal shape. Bigger crystals, with the diameter of ~ 3 mm or more,
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Fig. 27. Image, measured at T=2 mK, shows a c-facet near the crystal edge at a place where
two a-facets meet. The shape of the c-facet follows the general shape of the crystal; curvature
of the interference fringes on the facet is due to bending of the reference plate. The distance
between the crystal edge and the facet border has been marked with arrows at the corner
of the crystal (A) and in the middle of a straight crystal edge (B). The ratio B/A is shown in
Fig. 28 as a function of temperature.

Fig. 28. Ratio B/A of the distances between the c-facet border
and the crystal edge as specified in Fig. 27. Above T =0.9 K the
ratio B/A -> 1 because the corner of the crystal becomes rounded
owing to the vanishing of a-facets. The solid line is for guiding
the eyes.
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were more symmetric, possibly due to stronger influence of vibrations
which prevented them from sticking. The monitoring of interference lines of
the c-facet was even more difficult than in the case of a crystal partly on
the wall due to the reasons mentioned in Sec. 3.6. The general shape of the
facets in our small crystals down to 2 mm in diameter appeared to be an
elongated ellipse which varied with the degree of sticking on the bottom.
No changes in the symmetry of the facet could be resolved, which could be
regarded as an indication of the freezing of kinks in our experiments.

4.7. Search for Supersolid and New Faceting Transitions

The pressure of the sample was monitored down to our minimum tem-
perature in order to observe anomalies connected with the supersolid tran-
sition (see Eq. (26)). The crystal was partially detached from the side wall
in order to damp external pressure fluctuations by exposing extra rough
surface to the liquid. The small increase of pressure in the filling line due
to boiling of the He-bath was compensated with a gradually-cooled room
temperature ballast volume.

Figure 29 shows the change in the capacitance of our pressure gauge
AC vs. the temperature T of the nuclear stage during a slow warm-up. We
did not observe any anomalies connected with the supersolid transition
along the lines of Eq. (26). The melting pressure stayed constant within an
accuracy of Dp ~ 0.5 ubar between 2-8 mK. Our pressure sensitivity is 40
times better than the value of 2 Pa reported by the Leiden group who

Fig. 29. Change in the capacitance of the pressure gauge AC vs.
temperature T of the nuclear stage during a slow warm-up. The
zero of the capacitance is fixed to the level measured at the lowest
temperature. The inset shows a blow-up of the pressure below
12 mK.



measured the melting pressure between 1.5-120 mK.46 Assuming that
Tc = 1 mK,46 we obtain an upper limit for the concentration of zero point
vacancies, x v < 5 . 1 0 - 7 , which is slightly smaller than the value
x v < 6 . 1 0 - 7 reported by the Leiden group.

The measured capacitance decreases fast above 10 mK. The melting
curve is expected to decrease only by 3 ubar due to the phonon contribu-
tion between 1 mK and 100 mK,46 which corresponds to a decrease in the
capacitance by 0.2 f F. The extra decrease of the measured curve is probably
due to changes in the dielectric constant in the unshielded sections of the
electrical wiring which connects the gauge with the capacitance bridge.

During the course of the measurements described in this paper we kept
an eye on possible indications of new faceting transitions, such as the
appearance of new interference fringes near the crystal edge. No such dis-
coveries were made. This does not, however, rule out the possibility of new
transitions between 2-70 mK since our optical system is not very good for
this kind of measurements due to its small field of view and the small
angular resolution. The particular orientations of the crystals employed in
our experiments made it difficult to observe efficiently other orientations
than those of the c- and a-facets.

5. SUMMARY AND CONCLUSIONS

In our work we have extended the minimum temperature of optical
studies on 4He crystals down to 2 mK. Several new findings, connected
with crystal nucleation and growth, were obtained. By nucleation of crys-
tals at T = 20 mK without external electric fields, we were able to obtain
crystal seeds which did not contain any screw dislocations along the c-axis.
These seeds could be transformed into crystals with dislocation densities
~ 10 c m - 2 by growing them rapidly at 200 mK, while melting of the crys-
tals back to their original size eliminated the defects.

Our investigations on the growth of c-facets with dislocation densities
5-50 c m - 2 agree well with the classical parabolic power law for spiral
growth at T= 100 —200 mK. However, a linear dependence on the driving
pressure is observed at 2 — 20 mK, which is due to the inertia of elementary
steps in a rapidly turning spiral. Step velocities on the spiral reach values
of ~ 100 m/s, i.e., about to the maximum possible value. At the highest
velocities, a slight tendency to saturation is observed, which suggests that
the limit of step localization is approached at large driving forces.

The step mobility extracted from the spiral growth measurements
follows a 1/T3.04-law, which is in a good agreement with the theoretical
picture of independent steps whose mobility is limited by the kink-phonon
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scattering.20 The obtained values are also in good agreement with the
results of Rolley et al.12 who measured the step mobility on vicinal surfaces
at inclination angles > 0.3 degrees.

The studies of a-facets yielded results similar to those obtained for the
spiral growth of c-facets. The results remained more qualitative, mostly
because of the complications caused by the varying hydrostatic pressure
along a vertical facet.

No effects due to the freezing of kinks on the shape of facets could be
resolved down to 2 mK. The absence of this effect seems natural in the light
of the observed high-mobility steps at the same temperature. Such steps
could not exist if the density of kinks on the steps were to decrease
exponentially with temperature.

In crystals void of screw dislocations, the growth was found to be
intriguing. Contrary to expectations such crystals displayed slow, con-
tinuous facet growth up to speeds 0.5 nm/s; at higher speeds the growth
became discontinuous. Both growth modes become more effective with
decreasing temperature. Hence, the c-facet is able to grow even in the
absence of the usual spiral growth at low temperatures.

The apparent interfacial mobility of the slow growth mode is about
one million times smaller than the mobility observed in spiral growth. Such
a small mobility is puzzling in the light of the present theoretical models.
In our previous work, moreover, we found that the equilibrium shape of a
4He crystal contains an unexpected surface state transition from a regular
vicinal plane to a state governed by 1/t-dependent surface stiffness.34 At
the moment, it is not clear how these static and dynamic properties are
interweaved. We believe that the slow growth mode has to be somehow
connected with the observed curvature of facets. The ability to link the
dynamic and static properties of the interface better together would also
make the identification of the new surface state much easier.

The growth of defect-less crystals becomes jump-like at rates > 1 nm/s,
and 200-2000 layers are formed abruptly in one burst. In general, the
instability pressures of the bursts form distributions which fit rather well
with the ordinary activation behavior of creating new atomic layers.
However, the temperature and pressure dependencies of the results make
them rather challenging to account for fully.

Altogether, only the spiral growth of our 4He crystals is well under-
stood. Even in this case, the interpretation involves a small factor of doubt.
In our experiments it is difficult to distinguish truly between Cherenkov
radiation and step inertia, because of the similarities in the functional forms
of the respective mobilities. Slight tendency towards saturation in the facet
velocity is observed, which lends support to the latter interpretation. In
order to make a more proper distinction further measurements are
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necessary, for example, by extending the experiments to larger velocities
and driving pressures, thereby probing deeper into the nonlinear region
of the step mobility. Another possibility is to add 3He impurities to the
sample. If the Cherenkov-radiation is the dominant mechanism, then no
change should take place when increasing the amount of 3He atoms.
Experimental work to check this point is presently underway. In addition,
interesting phenomena have been predicted47 in the presence of 3He
impurities due to the existence of a bound state33,48 at the liquid solid
interface.
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