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The results are given of measurements of the thermoelectric power of tin alloyed with Zn, Hg, TI, and Bi 
(0.01-0.2 wt.%), canied out in the temperature range 3.7-7.2.K. The electron component a, of the 
thermoelectric power of these and other alloys of tin with Cd, In, Sb, Te, and Pb [see N. V. ~avari&' 
and A. A. Altukhov, Sov. Phys. JETP 43, %9 (197611 is compared with the results of a theoretical 
calculation. An analysis is made of the transition from a, (scattering of electrons by phonons in a pure 
metal) to a, (elastic scattering by impurities at maximum concentrations of the latter). A quantitative 
comparison of the dependence of a, on the valence of the impurities is made, including second-order 
corrections in perturbation theory of electron scattering by impurities [P. E. Nielsen and P. L Taylor, 
Phys. Rev. Lett. 21, 893 (1968); Phys. Rev. B 10, 4061 (197411. The results of calculations are in good 
agreement with experiment for elements belonging to the tin series. An analysis is made of the influence 
on a, of the deformation of the phonon spectrum of the metal, due to the difference between the atomic 
masses of impurities and the host lattice. This deformation results in considerable anomalies in the 
temperature dependence of q,, which is largely due to the presence of local and quasilocal frequencies in 
the lattice vibration spectrum. A table of parameters is given for reconstructing the energy dependence of 
the pseudopotentials of several elements. 

PAC5 numbers: 72.15.Jf. 72.15.Qm 

1. INTRODUCTION 

The absolute thermoelectric power a i s  the transport 
coefficient which describes the appearance of an elec- 
tric field E in a sample in which a temperature gradient 
VT i s  established in the absence of the current: j =0. 
This coefficient occurs in the standard transport equa- 
tions which have the following form for a crystal of 
cubic symmetry in the absence of a magnetic field: 

Experimental measurements give the emf across a 
sample between whose ends a temperature difference 
VT i s  established so that 

of impurities (up to 0.2 wt. %) on the thermoelectric 
power and thermal conductivity of pure tin in the tem- 
perature range 3.7-7.2 OK. The temperature depen- 
dences of the thermoelectric power of all  the samples 
obeyed the law 

where the first term a, i s  related to the direct action 
of a temperature gradient on the electron system and 
the second term aDh to the drag of electrons by the pho- 
non flux created by the temperature gradient. The co- 
efficient a was found to exhibit a dependence on the im- 
purity concentration and a t  the maximum concentrations 
i t  also depended strongly on the impurity valence 2. 

(2) The present paper is a continuation of the earlier 
study.' We shall give the results of new measurements 

In contrast to the resistivity p and thermal conductivity 
n, much less experimental work has been done on the 
thermoelectric power because of experimental difficul- 
ties (a typical thermoelectric power developed by 
metals is - V/OK, so that a t  low temperatures when 
AT -10 "K it is necessary to measure very small emf's 
U - lo-* V) and because of problems in the interpreta- 
tion of the results. In fact, p and n a re  governed by 
the density of states, scattering probability, etc. on 
the Fermi surface, whereas (Y is governed by the deriv- 
atives of these quantities with respect to the energy and, 
therefore, among the integral transport coefficients the 
thermoelectric power is one of the most sensitive to the 
electron structure of a metal and to the nature of quasi- 
particle scattering. 

of the impurity thermoelectric power a, of tin alloyed 
with Hg, T1, Bi and Zn and, moreover, we shall inter- 
pret the dependences of the thermoelectric power on the 
concentration c, valence 2, and mass M of the impur- 
ities. We have been unable to explain the charge de- 
pendence of the impurity thermoelectric power ( ~ ~ ( 2 )  
using the static model of impurities. Calculations car- 
ried out using the formulas of the exact scattering theo- 
ry and the Friedel sum rule2 give similar results to 
those obtained by applying the pseudopoential in the 
Born approximation (see below) and in both cases is a 
weak dependence on 2. Therefore, we shall consider 
the influence of the dynamics of impurity atoms. This 
influence on the electrical conductivity was first studied 
by Kagan and Zhernov.= They found that even in the 
Born approximation an allowance for the inelastic na- 

The use of quantum magnetometers (for example, ture of'the scattering of quasiparticles by impurities 
SQUID'S) has simplified greatly the task of accurate (i.e., if  the scattering is accompanied by the emission 
measurement of the thermoelectric power of metals at o r  absorption of a phonon) and for the deformation of the 
low temperatures. In an earlier paper1 two of the pres- lattice vibration spectrum associated with the difference 
ent authors investigated the influence of a small amount between the masses of the impurity and lattice atoms 

1137 Sov. Phys. JETP 48(6), Dec. 1978 0038-5646/78/1201137-09$02.40 O 1979 American Institute of Physics 1137 



has the result that the scattering by impurities and pho- 
nons a re  interdependent processes. This results in a 
deviation from the Matthiessen rule for the electrical 
resistivity: 

In the case of the thermoelectric power these correc- 
tions are  small (at low temperatures) because of two 
small factors: one of them represents the impurity 
concentration and the other is of the order of c(T/8)" 
and represents temperature (here, 8 is the Debye tem- 
perature and the different values of n represent differ- 
ent contributions). 

Nielsen and Taylor4 considered the problem of the 
scattering of quasiparticles by impurities in the second 
order of perturbation theory. They found that if a vir- 
tual phonon (see Fig. 4 below) participates in the inter- 
mediate state, so  that the scattering as  a whole is elas- 
tic, the corrections to the impurity part of the thermo- 
electric power a re  considerable: they a re  of the same 
order of magnitude a s  the thermoelectric power repre- 
senting the scattering by static impurities. In view of 
the good agreement between the calculations of Nielsen 
and Taylor and the experimental data for alkali metals, 
we shall apply their approach to the charge dependence 
of the impurity thermoelectric power in our case. 

Following Nielsen and Taylor, we shall apply the 
Heine-Animalu-Abarenkov pseudopotentials5 to the 
lattice and impurity atoms, but (in contrast to Nielsen 
and Taylor) we shall allow for the dependence of the 
Fourier components of the pseudopotentials on the trans- 
ferred momentum V(q).lb Moreover, since Nielsen and 
Taylor4 ignore a possible influence of the difference be- 
tween the host and impurity atomic masses, we shall 
analyze the dependence a e I ( M ) .  

In calculations of the scattering probability we shall 
assume that the Fermi surface is isotropic. The cor- 
rections to the scattering probability associated with 
the anisotropy of this surface a re  in any case small be- 
cause of the smallness of the pseudopotential itself com- 
pared with the characteristic energy of quasiparticles - V/p (where p = &,,-see Ref. 6), and we shall not con- 
sider them here. The topology of the Fermi surface of 
tin1 should affect mainly the low-temperature limit of 
a pure metal whose thermoelectric power is practically 
independent of the scattering properties and is governed 
by the derivatives*9 

where v is the velocity of quasiparticles on a given con- 
stant-energy surface and S is the area of this surface. 
In the impurity limit (i.e., in the case of the maximum 
impurity concentrations) the thermoelectric power also 
contains this term but i t  does not affect the charge de- 
pendence (a change in this term results in a simultane- 
ous shift of all the values of the thermoelectric power 
by a constant amount). Since the experimental data on 
the low-temperature thermoelectric power of pure tin 
a r e  not absolutely reliable2'*we shall replace the Fermi 
surface of tin with a sphere of radius k,(Sn). 

2. MEASUREMENT METHOD. EXPERIMENTAL 
RESULTS 

The absolute thermoelectric power of tin was mea- 
sured. The voltage drop which appeared in the sample- 
superconductor circuit in the presence of a temperature 
gradient along the sample was compensated in the same 
way a s  in Ref. 1. The majority of the measurements 
were carried out in an inverted Dewar and some com- 
plications were encountered in the measurement of AT. 
The maximum error  in A T  could reach lo0&. More 
accurate values of the thermoelectric power and thermal 
conductivity, and a check of the earlier data, were car- 
ried out in a vacuum system (Fig. 1). 

In comparison with the conventional apparatus for the 
thermal conductivity measurements, a distinguishing 
feature of the vacuum system was that a sample 6 was 
insulated electrically from heaters H1 and H2, ther- 
mometers T1 and T2, and casing 4. A superconductor 
circuit 2, used to measure the thermoelectric power, 
was also insulated electrically from the casing. The 
insulation was provided by glass-ferrochrome seals 3. 
Thermal contact between the thermometers T1 and T2 
and the sample was improved by sealing them in aper- 
tures by a spark treatment. The apertures were filled 
with GZh 94 silicone oil. A support rod 8 carried a 
carbon thermometer T3, which gave the temperature 
rise from which the pressure in the system was esti- 
mated. The system was evacuated by a backing pump 
through a German-silver capillary 1 at room tempera- 
ture and was tightly sealed. Activated carbon 9 estab- 
lished hard vacuum inside the system after cooling. 
Single-crystal samples were grown in glass molds with 
a thin coating of soot. The central (investigated) part 
of a sample, 2 mm in diameter and 30-50 mm long, 
remained inside the glass mold 5. At the edges glass 
was etched away and heaters H1 and H2, thermometers 
T1 and T2, and potential 2 and current 7 terminals were 
mounted. 

Some control samples were freed of the glass mold. 
Potential lead wires were usually soldered to a sample 
by Wood's alloy and in some cases these wires were 

FIG. 1. Schematic dia- 
gram of the vacuum sys- 
tem. 
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bonded mechanically to tin or  were replaced with PETV- 
2-NT wires fused directly into a sample. There were 
no significant differences between the values of o! ob- 
tained for samples with different connections. 

Tin has the tetragonal crystal structure and the re-  
sults reported below were obtained in the (001) plane. 
Single crystals were grown in a cylindrical furnace a t  
a rate of = 1 mm/min. The orientation of the samples 
was determined (by x-ray diffraction) to within 5 O. I t  
was found that samples with a residual resistivity pi 2 5 
x 10%. cm showed no difference between the results of 
measurements along the [loo] and [I101 directions. 

An investigation of each of the systems (Sn-In, Sn- 
Cd, etc.) started with a preparation of an alloy of a 
spectroscopically pure admixture and pure tin (p2,,/p4., 
= 6 x  lo4). The initial composition was determined by 
weighing each component. Then, samples of a given 
system were prepared either by gradual dilution of the 
original alloy with pure tin or  by dilution with pure tin 
of the residue of the metal left after preparation of the 
previous sample. A high solubility and direct propor- 
tionality of the residual resistivity pi to the impurity 
concentration c were observed for all  the samples of 
Sn-Cd, Sn-In, Sn-Sb, Sn-Bi, and Sn-Hg systems. 

FIG. 2. Impurity-concentration dependences of the coefficient 
a of the electron comwnent of the thermoelectric Dower: 

T1; r )  Zn; 0 )  ~ d ; - e )  In; 0) Pb; *) Sb; 0) Te; n) Bi; 
V) Hg. 

The lattice thermal conductivity of metals a t  tempera- 
tures from 1 to 10 "K usually does not exceed 10- 
W. cm". OK". The thermal conductivity of our samples 
was many times greater this value s o  that clearly heat 
was transported by electrons and a t  T << O the following 
relationship should be satisfied: 

The values of pi/c obtained for these systems were in T I % - ~ , / L , + B T ' ,  (6) 
good agreement with those reported by Aleksandrov and 
Dukin.lo This direct proportionality between pi and c 
was not obeyed for impurity concentrations exceeding 
0.03% for Sn-Te, 0.2% for Sn-Pb, 0.1% for Sn-Zn, 
and 0.05% for Sn-T1. We shall give below the results 
of measurements of the values of p(T), %(T), and a ( T )  
in the range of impurity concentrations where pi is 
directly proportional to c. 

The homogeneity of the impurity distribution along a 
crystal was checked for a sample of Sn-Tl (pi  = 2.6 
x lo-' i2.cm). It was established that in the case of a 
single crystal 200 mm long grown in the usual way the 
residual resistivity measured a t  two opposite ends of 
the sample agreed to within 1%. A prolonged annealing 
(15 h a t  200°C) has no significant influence on the value 
of a. For  example, in the case of two similar Sn-T1 
samples i t  was found that before annealing the param- 
eters were pi = 1.54X 10" 51. cm, a = -2.45 x 10" v/"F?, 
and b = 0.034 x 10- V/"K4, whereas after annealing these 
parameters were pi = 1.73 X L?.crn, a = -2.29 x 
V/"K2, and b = 0.015 x lo9 V/"K4. 

Table I. 

*Taken from Ref. 10. 

where Lo= 2.45 x lo-' W .cm-'.OK". Formula (6) de- 
scribes well the results obtained for all  the samples in 
our vacuum system. However, in the simplified mea- 
surement method (in an inverted Dewar) there was an 
e r r o r  in the determination of AT in the measurements 
on the purest samples (pi < 5 x 51. cm), so  that the 
values of a and b given in Ref. 1 for these samples were 
incorrect. 

The impurity-concentration dependence a(pi) is plotted 
in Fig. 6 in Ref. 1. Here, we shall give the depend- 
ences a(l/pi) for all  our alloy systems (Fig. 2), which 
can be used to find the impurity values [,,(a 
= -0.238[,,x lo-') given in Table I. The dependence of 
5mx, on the impurity valence of the tin and lead series is 
shown in Figs. 3a and 3b, respectively. Two systems, 
Sn-T1 and Sn-Hg, a r e  distinguished by much larger 
values of [,,. 

1 r u r i t Y  

Cd 
In 
Sb 
Te 

yf 
Pb 
Bi 
Zn 

Pure Sn 

psi. an . (at.%)-' 

FIG. 3. Dependences of the electron component-of the thermo- 
electric power in the impurity limit on the impurity valence: 
a) impurities of the tin series; b) impurities of the lead series. 
The points denoted by are the experimental data, 0 are the 
results of our calculations, and + are  the results of calcula- 
tions made by the Friedel method. 
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3. DEPENDENCE OF THE THERMOELECTRIC POWER 
ON THE IMPURITY CONCENTRATION 

We shall use the variational method of solving the 
Boltzmann transport equation to explain the impurity- 
concentration dependence of the thermoelectric power 
and we shall show that even a very small number of 
test functions i s  sufficient to explain qualitatively the 
change in the thermoelectric power on increase in the 
impurity concentration. We shall consider only the 
electron component of the thermoelectric power a,, 
because the experimental data on the impurity-concen- 
tration dependences of the phonon component a,, are  
still insufficient for a reliable comparison with the re- 
sults of a theoretical analysis. 

Using the standard test functions 

where q,,, a re  the electron functions (describing the 
transport of charge and energy), cpL i s  the phonon func- 
tion, k and q are the electron and phonon quasimomenta, 
€,= @k2/2m, and the x axis i s  selected along the direc- 
tion of E and VT, we obtain the following expression for 
the thermoelectric power of a metal8: 

s 2 k B 2 ~  a ln(ks,) L .=--I7 sell 
a ln E [ I  --(i+ql-2nr)] LO 

L 8 In o ( e k )  +-- PI, 
La r )  In ea  

k~ 4n4 ( 2') (-2) +-- - 
e 52, 8 

PIL' q , = - ,  
PIIPL' 

On the other hand, for a pure metal with T <<8, we 
have L/L, = (T/8)', which gives 

If only the normal scattering processes a re  allowed for, 
it is found that qz= 1 and only the first  term remains in 
Eq. (lo), i.e., the usual Wilson is obtained. 
The occurrence of the umklapp processes results in a 
deviation from the linear temperature dependence of a, 
for a pure metal at  low temperatures and this may ex- 
plain deviations from the linear dependence observed 
for pure samples. 

Introduction of an impurity alters the thermoelectric 
power a, (which then varies with the impurity concen- 
tration as  a power law with a fractional exponent) from 
the value a,, given by Eq. (10) in the c = O  case to the 
value a,, of Eq. (9) for pi >>po, which is no longer con- 
centration-dependent. This is in qualitative agreement 
with the experimental results (see Fig. 6 in Ref. 1). 
The application of the Gorter formula12 

which i s  obtained by substituting the Matthiessen rule 
p =pi + p,, in Eq. (9), to the impurity-concentration 
dependence may be justified only if  the electron scatter- 
ing processes are  elastic and independent. 

4. DEPENDENCE OF THE THERMOELECTRIC POWER 
ON THE IMPURITY VALENCE 

Here, Pi, are  the standard variational integrals of the 
(cpi,Pq,) type, where P i s  the collision operator, S, i s  
the area of the constant-energy surface, Lo = rzkB2/3ez 
is the Lorenz number, L = n/aT i s  the Wiedemann- 
Franz ratio, a(&,) is the "spectral" density of the con- 
ductivity [ o = ~ o ( & ~ ) & ~ ] ,  Zo is the valence of the solvent 
metal, and all the quantities a r e  taken a t  &,= p. The 
term in the braces and the last term in Eq. (8) repre- 
sent, respectively, the electron a, and phonon a,, com- 
ponents of the thermoelectric power. In the lowest 
approximation we have a, = T/p, a, = (T/E#. It should 
be noted that PIL and PzL contain only the probability of 
the electron-phonon scattering, because PI,, PI,, and 
P, (PLL) a re  the probabilities of electron (pkonon) scat- 
tering by all possible sources; the integral PI, 
describes only the inelastic scattering associated with 
urnklapp processes. 

If the impurity concentration is sufficiently high or  the 
temperature is sufficiently low so that pi >>po, which we 
shall call the impurity limit, the main contribution to 
the scattering is due to elastic processes and the 
Wiedemam-Franz law is satisfied: L/L, = 1, = 0, 
and ql,z << 1. In this case, Eq. (8) becomes identical 
with the well-known Mott formula 

which can also be easily obtained in the T approxima- 
tion, valid in this case. 

We shall now consider the electron component a, in 
the impurity limit (i.e., a t  the maximum impurity con- 
centrations). In this limit, quasiparticles a re  scattered 
mainly by impurities and a,, can be calculated from Eq. 
(9) using o(&d in the 7 approximation: 

It is convenient to express a,, in terms of the dimen- 
sionless quantity 5: 

nak.'T 
a,, = - 

3ep 
E. 

Next, substituting Eq. (11) into Eq. (9), we obtain 

If we know the impurity potential, we can find r(&,) 
applying the usual rules of perturbation theory. We 
shall describe impurities by a pseudopotential W which 
can be calculated as  described in the Appendix. In the 
Born approximation for the scattering probability, we 
obtain 

where tik, i s  the Fermi momentum of tin, fiq is the 
transferred momentum, N and 51 a re  the number of 
atoms and the volume of the crystal, respectively. 
Values of 5 calculated by means of Eq. (14) a re  listed 
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in Table I in the column headed 5,. The first  term in 
Eq. (13) is 9, which corresponds to the spherical Fer-  
mi surface and parabolic electron dispersion, i.e., 

where 

We can see from Table I that 5, is almost the same 
for various elements. The exceptions a re  the values of 
5, for T1 and Hg. This may be due to inaccuracy of the 
calculations resulting from the strong energy depend- 
ences of the pseudopotentials W of these impurities 
(calculations by the Friedel method give values for T1 
and Hg of the same order a s  for all  other elements). 

It follows that the scattering by static impurities fails 
to describe the strong dependence of cue, on the impurity 
valence 2. Nielsen and Taylor4 showed that allowance 
for the virtual impurity recoil in scattering considered 
in tne second order of perturbation theory gives cor- 
rections to the thermoelectric power which a r e  of the 
same order of magnitude a s  5,. They used the Hamil- 
tonian 

which includesapart  from the usual terms-the terms 
with two-quantum transitions and those describing in- 
elastic scattering of electrons by impurities accompan- 
ied by phonon emission o r  absorption (impurity recoil). 

Diagrams of the T matrix of the transition, describ- 
ing the processes responsible for the large corrections 
to the thermoelectric power, a r e  shown in Fig. 4. The 

FIG. 4. Diagrams of the scattering matrix in the second order 
of perturbation theory, responsible for the appearance of 
higher corrections in the thermoelectric power. 

FIG. 5. Electron scatter- 
ing processes correspond- 
ing to two types of dia- 
grams in Fig. 4. 

processes on the left describe the uconventional" scat- 
tering of electrons from an initial state k to a final state 
k' via an intermediate state k (Fig. 5a). The transition 
amplitude of these processes contains a factor 1 - fr, 
where f,, is the equilibrium distribution function of 
electrons in the intermediate states. The processes on 
the right of Fig. 4 describe the scattering of electrons 
such that an electron-hole pair (surrounded by a dashed 
line in Fig. 5b) forms first  and then one of the partners 
of the pair (actually a hole) annihilates with an electron 
existing before the process (this pair is surrounded by 
a continuous curve in Fig. 5b). The transition ampli- 
tudes of these processes contain the factor f,, . The 
presence of a phonon in intermediate states results, on 
the one hand, in a considerable reduction in the transi- 
tion amplitude because of the appearance of the factor 
m/M (so that processes of this kind a r e  quite unimpor- 
tant in the resistivity calculations) and, on the other, 
in this case the addition of contributions of diagrams of 
these two types does not result in cancellation of the 
Fermi function f,.. of the intermediate electrons. 
Therefore, the corrections to the transition probability 
have anomalously large derivative with respect to 
the energy and the contribution to the thermoelectric 
power (13) is of the order of (m/M)(y/€3)2-1. 

The contributions corresponding to the three pro- 
cesses in Fig. 4 are4 

where V, i s  the pseudopotential of the solvent metal; 
the functions \k,(T/O) a re  of the order of unity at T = O  
and decrease rapidly on increase in temperature. 

We have doubts about the correctness of the conclu- 
sion of Nielsen and Taylor4 that the thermoelectric 
power of a pure metal should include a correction At,, 
of Eq. (15) associated with two-phonon scattering pro- 
cesses (Fig. 4a), because in the case of a pure metal 
the scattering i s  not elastic and the formula (9) used by 
them is inapplicable a t  low temperatures. It follows 
from a more general expression, for example from Eq. 
(8), that the correction A[, should be multiplied by 
L/L,. At low temperatures we have L/L, a (T/0)2 and, 
therefore, the contribution At, should essentially be 
negligible. 

Moreover, a s  pointed out above, the pseudopotentials 
V, and W are  regarded a s  constant in Ref. 4, although 
in reality they depend strongly on the transferred mo- 
menta V,(q) and W(q) (lack of allowance for this depend- 
ence results in almost complete indeterminacy of the 

1141 Sov. Phys. JETP 48(6), Dec. 1978 Altukhovet at. 1141 



calculated results). Integrating with respect to the 
angles and introducing dimensionless variables, we can 
easily obtain the following formulas for low tempera- 
tures (T -- 0): 

' r n  WWW 
A"-(+-) T 6 z 0 x .  

Here, 

The results of a numerical calculation carried out 
using these formulas are  presented in Fig. 3 and in 
Table I. We can see that in the case of the tin series 
the quantitative agreement with the experiments is 
satisfactory. However, there i s  no agreement in the 
case of the lead series. An attempt to allow for the 
influence of the deformation of the lattice vibration 
spectrum on introduction of impurities with a very dif- 
ferent atomic mass (see below) fails to correct the sit- 
uation. In the limit T - 0 the difference between 
masses of the impurity and host atoms should not affect 
the impurity component of the thermoelectric power. 
It i s  possible that the absence of agreement is associa- 
ted with the neglect of the electron-phonon umklapp 
processes which are not "frozen out" at low tempera- 
tures because phonons participating in the scattering 
a re  not thermal. A more likely reason for the dis- 
agreement is the lower accuracy of the calculations of 
the impurity pseudopoentials for elements belonging to 
a different series of the periodic table. This is con- 
firmed by the fact that similar results are  obtained on 
comparison with the experimental data on the residual 
resistivity .lo Although a calculation of pi using the 
pseudopotential gives a better agreement with the ex- 
perimental data than the Friedel calculation, the agree- 
ment with experiment for the lead series i s  consider- 
ably poorer than for the tin series (Table I). 

5. DEPENDENCE OF THE THERMOELECTRIC POWER 
ON THE IMPURITY MASS 

Introduction of an impurity into a metal alters consid- 
erably the nature of the lattice  vibration^.'^-'^ The 
thermodynamic16 and kinetic properties of a metal a re  
affected. In the case of the electrical conductivity, this 
problem has been investigated in detail by Kagan and 
Z h e r n ~ v . ~  The question of the influence of the deforma- 

tion of the lattice vibration spectrum due to the differ- 
ence between the masses of the impurity and host atoms 
on the thermoelectric power of a metal has not yet been 
considered. We shall report calculations only for the 
impurity component of the thermoelectric power and 
consider elsewhere the influence of the mass difference 
on that part of the thermoelectric power which i s  asso- 
ciated with the electron-phonon scattering, in particu- 
lar, with the drag of electrons by phonons. 

It should be pointed out that the results for the elec- 
trical conductivity obtained in Ref. 3 by a method 
based on reduction of the scattering probability to the 
Van Hove correlation function17 cannot be applied 
directly to calculations of the thermoelectric power 
because this approach is restricted significantly by 
the Born approximation. On the other hand, as  pointed 
out above, i t  is necessary to allow for the scattering 
processes in the second order of perturbation theory. 
We shall use the well-known T matrix method1' and go 
over to the Green functions of a vibrating lattice, by- 
passing the correlation functions. 

Let us assume that a lattice composed of atoms of 
mass M, is perturbed by impurities of mass M =M, 
X (1 - E) and that the impurity concentration c is low. 
The change in the force constants will be ignored. If 
BSa(rn) are  the eigenfunctions of the dynamic matrix, 
where s = (q, s), the displacements of ions can be de- 
scribed by second-quantization operators a s   follow^'^: 

In this case the Hamiltonian of the interaction of elec- 
trons with ions without allowance for two-phonon pro- 
cesses becomes 

~z~.-~~~(i~r~)), M.'" . 
where c, and c,' are  the electron annihilation and crea- 
tion operators; W,, is the Fourier component of the 
difference between the pseudopotentials of the impurity 
Vi and of the host lattice Vo (normalized to the volume 
of the crystal); c, assumes the value 1 for the impurity 
sites and the value 0 for the others sites; NR(K)=C, 
x exp(iKr,) (N i s  the number of ions in the crystal). The 
Hamiltonian (18) is equivalent to that used by Kagan and 
Zhernov3 and a calculation of the transition probability 
in the first order of perturbation theory gives all the 
contributions to the electrical conductivity found by 
them. 

If electrons a re  scattered mainly by impurities, the 
scattering probability w , ,  can be calculated ignoring 
the square of the second term in Eq. (18) (which gives 
rise to the Bloch resistivity p, << pi) and also dropping 
the first-order corrections to the probability of elec- 
tron scattering by impurities Calculation of the 
contributions of the diagrams in Figs. 4b and 4c to the 
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transition amplitude gives 

where f i ( J = C k - E v .  

The pair combinations of functions BSa(r,) in Eqs. 
(19a) and (19b) a r e  then replaced by the Green functions 
of the perturbed latticex5 

The Green functions themselves a re  obtained from the 
Dyson equation in the f i rs t  order with respect to the 
impurity concentration. 

Going over to the scattering probability and averaging 
the Green functions over the impurity positions,15 we 
obtain 

wrt.=2nA-'cXG (EL-er . )  (P,+PA+P8) 

Here, 

fk'. 
X (kt'-k) - Re 

D ( D 2 )  
M, 1-ec;iZD(6') ' 

where 

The results obtained in this form apply to a cubic lat- 
tice with an arbitrary vibration spectrum. In the Debye 
model the integrals with respect to dq in Eq. (22) sim- 
plify and the corrections to the thermoelectric power 5, 
corresponding to the scattering by static impurities can 
be described in the same way a s  in Eq. (15) but using 
different functions Ik, and Ik3. 

The functions Ik2 and @, found by numerical calcula- 
tion a r e  shown in Fig. 6. The dashed curves a r e  the 
results of Nielsen and Taylor obtained without allow- 
ance for the mass difference, i.e., for & = 0 [in this 
case we have A(w*) = 1, y(w2) = 01. The change in the 
temperature dependence of the thermoelectric power 
is large. In the limit T - 0 the functions become Ik,, 
9, - 1 for any value of C .  For  high values T in the case 
& # l we have Ik,, @,a 1/T, but if c = 1 (which corre- 
sponds to the scattering by vacancies), then Ik2- 9, 
@, - 9 .  The magnitude of the effect is closely related 
to the presence of local and quasilocal frequencies. A 
quasilocal frequency, which appears a s  usual in the 
case of very heavy impurity atoms (c < 0, Ref. 141, 
gives rise to low-temperature peaks in the thermoelec- 
tr ic power which a r e  not very large but fairly sharp. 
Introduction of sufficiently light impurities can give 
r ise  to a local frequency,13 which increases very great- 
ly the value of @, a t  relatively high temperatures. The 
characteristic temperature of the thermoelectric power 
maxima is T*=wo/3, where w, is the frequency of a 
local o r  quasilocal level.15 

The electrical conductivity exhibits similar behavior 
but in the latter case the effects a r e  small because of 
the low concentrations. In the case of the thermoelec- 
tr ic power, logarithmic differentiation of the recipro- 
cal of the relaxation time 1/r with respect to the energy 

In the case of electron scattering by impurities the 
thermoelectric power is calculated from Eq. (13). The 
result is 

+- 
ben = " " NZe a?& 

2n2k,' Y,Az 
-a 

(@-I )  (1-e-=) 

where x = Bw/k,T; the above expression contains func- 
tions familiar from the lattice vibration theory: g(w2) 
is the distribution of the squares of the frequencies of 
the unperturbed lattice, 

FIG. 6. Dependences of 
the thermoelectric power 
on the impurity mass. The 
value of E is given along- 
side each curve. 
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ensures that the corrections do not contain the impurity 
concentration and the effects a r e  considerably greater. 
Nevertheless, experimental detection and investigation 
of the effects of the deformation of the lattice vibration 
spectrum due to introduction of impurities with a very 
different mass meets with considerable difficulties in 
t h e  case of the thermoelectric power. The main is the 
separation of the impurity a i  and phonon am compo- 
nents, which is not a simple task because of the com- 
plex temperature dependences of the two contributions. 
At very low temperatures (T - 0) the problem simpli- 
fies. Since in narrow intervals near T = O  the functions 
q ~ ,  and Qs can be approximated by the parabolas 

and the phonon drag gives r ise  to a cubic temperature 
dependence a, = bTS, the value of a/a,, where a, 
=r2kB2T/3eg, is a linear function of the square of tem- 
perature: 

The experimental values a,,, fit well the straight line 
a,dao= bsXpT2/a,,. However, the much higher 
values of for the heavy impurities (Hg, T1; c = -1) 
compared with 5,, for the impurities with the same 
valences (Cd, In) but with practically the same mass a s  
tin cannot be explained by the deformation of the lattice 
vibration spectrum, a s  can be deduced from Eq. (23). 
Nevertheless, the phonon drag coefficient b may be 
masked by the impurity contribution 5,' + 5,'. 

The authors a r e  grateful to I. V. Abarenkov for sup- 
plying tables which were used to reconstruct the energy 
dependences of the pseudopotentials. The authors 
thank A. I. Shal'nilov, Yu. V. Sharvin, and A. F. 
Andreev for discussing the results. 

APPENDIX 

To calculate a,,, we have to know the pseudopoten- 
tials W of impurity atoms in the tin lattice. However, 
they cannot be determined accurately on the basis of 
tabulated data because these data do not reflect the 
energy dependence of the pseudopotential. 

We shall use the Heine-Animalu-Abarenkov method5 
in which the potential of an isolated ion is replaced by 
the model potential of the type (Fig. 7): 

FIG. 7. Coordinate de- 
pendence of the model 
pseudopotential. 

tion in the Coulomb field is specified unambiguously by 
selecting E and by the condition of fall of the radial 
wave function R,, - 0 in the limit r- a). For  conven- 
ience, i t  is assumed that A, =A, for I > 2. 

When the potential V,(r) has been constructed, the 
unscreened form factor can be found: 

For  the scattering by a constant-energy surface / k + q( 
= 1 k/ = k = ( 2 ~ ) ' ' ~  (in atomic units) in an isotropic case, 
we have 

The nonlocal nature of the pseudopotential appears in 
this case a s  an additional energy dependence V,(q). 
The screening of the nonlocal potential is allowed for 
by introducing the screening part6 

\ 

where 

The forms factors V,(q) (which a re  now screened) 
found in this way for the Fermi energy E = & F  are  given 
in Ref. 6 for 25 elements. 

However, we need the impurity pseudopotentials and, 
therefore, the unscreened form factor should be taken 
a t  E =&,(Sn) and in the screening case one has to use 
the permittivity E(q) of the electron gas in tin [i.e., k, 
= k,(Sn) has to be substituted in Eq. (A.4)]. Finally, 
the required impurity pseudopotential W is found by 
subtracting the impurity atom potential Vi calculated 
a s  above and the pseudopotential of pure tin V, : W =  Vi 
- v,. 

It should be noted that the impurity pseudopotentials 
have the correct limit for q - 0 and this limit is 
- Q&,Az/Z,, where AZ = Z  - Z,, required to satisfy 
the Friedel sum rule. We can demonstrate this easily 
by means of the relationship 

where P, is the operator of the projection on the I-th 
spherical harmonic. The value of R, is taken to be 
of the order of the ionic core radius and the constants 
A, a re  adjusted s o  that the lower level of the potential 
(A.l) coincides with the energy of the spectral term 
En, for each value of n in turn. The eigenfunctions of 
the potential (A.l) in the r 3 R, case a r e  automatically 
identical with the true wave functions (since the solu- 

readily obtained from the expressions for the Born 
phase shifts (see, for example, Ref. 19). 

We repeated the above procedure. At the same time 
we allowed for later comments in Ref. 20, referring 
to the difference between the true wave functions and 
the pseudowave functions inside the ion core (depletion 
hole). The energy dependence of the pseudopotential 
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Table II. 

w a s  calculated converting the  coefficients A ,  to the re- 
quired energy by means  of 

The values of k,, A , ,  and R, w e r e  taken f r o m  Ref. 6. 
The  p a r a m e t e r s  B ,  not given in the l i t e ra ture  w e r e  re- 
constructed by the  Animalu method5 using the Abar-  
e n k o 4 l  and spectral te rmz2 tables .  T h e  p a r a m e t e r s  of 
the model potential f o r  the F e r m i  eigenenergies  of the 
elements  are given in Table 11. 

' ) ~ i e l s e n  and ~ a y l o l i '  used a constant pseudopotential, which 
corresponds to q =  (2/3)kF, and linked the thermoelectric 
power to the experimental values. Our calculations require 
no adjustable parameters. 

 he values given in Ref. 1 do not seem to be sufficiently re- 
liable. This is due to the deficiencies of the measurement 
method and due to the doubt whether the pure limit was 
reached o r  whether the values obtained were affected by 
residual impurities whose maximum nominal concentrations 
were a s  follows: <1om4I?e, <3 ~ 1 0 ~ ~ 1 ,  <5 x ~ o - ~ s ~ ,  <5 x 1 0 ~ ~ s  
(at.%). 

any case, these do not exceed the Bloch probability we ,,h 

and, moreover, have no anomalous energy dependence, in 
contrast to the second-order corrections4 in which the distri- 

bution function of intermediuate electrons occurs in the pre- 
sence of a phonon in the intermediate state. 
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