ТОЧНАЯ АСИМПТОТИКА ДЛЯ *В*-ФУНКЦИИ В КВАНТОВОЙ ЭЛЕКТРОДИНАМИКЕ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 28 января 2009 г.

Показано, что асимптотика функции Гелл-Манна–Лоу в квантовой электродинамике может быть установлена точно, $\beta(g) = g$ при $g \to \infty$, где $g = e^2$ — бегущая постоянная тонкой структуры. Это решает проблему электродинамики на малых расстояниях L (справедлива зависимость $g \propto L^{-2}$) и полностью снимает вопрос о «нуле заряда».

PACS: 11.10.Gh, 11.10.Hi, 11.10.Jj, 12.20.Ds

Как показали Ландау, Абрикосов, Халатников [1], связь затравочного заряда (e₀) с наблюдаемым (e) в квантовой электродинамике (КЭД) определяется выражением

$$e^{2} = \frac{e_{0}^{2}}{1 + \beta_{2}e_{0}^{2}\ln\Lambda^{2}/m^{2}},$$
(1)

где m — масса электрона, Λ — параметр обрезания по импульсу. При конечном e_0 и $\Lambda \to \infty$ возникает ситуация «нуля заряда» ($e \to 0$). Общепринятая интерпретация формулы (1) состоит в ее обращении [1],

$$e_0^2 = \frac{e^2}{1 - \beta_2 e^2 \ln \Lambda^2 / m^2},$$
 (2)

так что e_0 относится к масштабу расстояний Λ^{-1} и выбирается из соответствия со значением наблюдаемого заряда e. При увеличении Λ происходит рост e_0 и в области $e_0 \sim 1$ формулы (1), (2) теряют свою применимость; поэтому существование в формуле (2) так называемого полюса Ландау не имеет глубокого смысла.

Реальное поведение заряда как функции масштаба расстояний *L* определяется уравнением Гелл-Манна-Лоу¹⁾

$$-\frac{dg}{d\ln L^2} = \beta(g) = \beta_2 g^2 + \beta_3 g^3 + \dots$$
 (3)

(где $g = e^2$ — постоянная тонкой структуры) и зависит от вида функции $\beta(g)$. Согласно классификации Боголюбова и Ширкова [2], рост g(L) прекращается, если $\beta(g)$ имеет нуль при конечных g, и продолжается до бесконечности, если $\beta(g)$ знакопостоянна и имеет асимптотику $\beta(g) \propto g^{\alpha}$ с $\alpha \leq 1$ при $g \to \infty$; если же $\beta(g) \propto g^{\alpha}$ с $\alpha > 1$, то $g(L) \to \infty$ при конечном $L = L_0$ (возникает реальный полюс Ландау) и теория внутренне противоречива ввиду неопределенности g(L) при $L < L_0$. Ландау и Померанчук [5] пытались обосновать реализацию последней возможности, аргументируя, что формула (1) верна без ограничений; последнее однако возможно лишь при точном равенстве $\beta(g) = \beta_2 g^2$, которое заведомо не выполняется ввиду конечности β_3 .

Из сказанного ясно, что проблема электродинамики на малых расстояниях требует установления вида функции Гелл-Манна–Лоу $\beta(g)$ при произвольных g, и в частности — ее асимптотического поведения при $g \to \infty$. В недавней работе автора [4] обнаружено, что асимптотики ренормгрупповых функций для актуальных теорий поля могут быть найдены аналитически. Предпринятые ранее попытки восстановления функции Гелл-Манна–Лоу $\beta(g)$ в теории φ^4 путем суммирования рядов теории возмущений привели к асимптотике $\beta(g) = \beta_{\infty}g^{\alpha}$ при $g \to \infty$, где $\alpha \approx 1$ для размерностей пространства d = 2, 3, 4[6–8]. Возникает гипотеза, что асимптотика имеет

^{*}E-mail: suslov@kapitza.ras.ru

¹⁾ Ввиду различия ренормировочных схем, зависимости от L для затравочного и перенормированного заряда не совпадают и описываются различными β -функциями [3]; для этих функций одинаковы лишь первых два коэффициента β_2 и β_3 .

Общий вид функции Гелл-Манна – Лоу в КЭД

вид $\beta(g) \propto g$ для всех d. Анализ нуль-мерного случая подтверждает гипотезу и вскрывает механизм ее реализации. Он связан с неожиданным обстоятельством: предел $g \to \infty$ для перенормированного заряда g определяется не большими значениями затравочного заряда g_0 (что кажется интуитивно очевидным), а его комплексными значениями. Более того, оказывается достаточным ограничиться областью $|g_0| \ll 1$, где функциональные интегралы могут оцениваться в перевальном приближении. Если направление в комплексной плоскости g_0 выбрано так, что перевальный вклад от тривиального вакуума сравним по величине с перевальным вкладом от главного инстантона, то функциональный интеграл может обратиться в нуль. С нулем одного из функциональных интегралов и связан предел $g \to \infty$, который в результате оказывается вполне контролируемым, позволяя получить асимптотики как β -функции, так и аномальных размерностей: первая действительно оказывается линейной.

В настоящей работе показано, что та же идея может быть применена и в КЭД. Попытка восстановления функции Гелл-Манна–Лоу в этой теории [9] дает знакопостоянную $\beta(g)$ (рисунок) с асимптотикой $\beta_{\infty}g^{\alpha}$, где

$$\alpha = 1.0 \pm 0.1, \quad \beta_{\infty} = 1.0 \pm 0.3. \tag{4}$$

В пределах погрешности полученная *β*-функция удовлетворяет неравенству

$$0 \le \beta(g) < g,\tag{5}$$

полученному в работах [10, 11] из спектральных представлений, тогда как найденная асимптотика (4) в пределах точности совпадает с верхней границей неравенства (5). Такое совпадение выглядит неслучайным и указывает на то, что асимптотика $\beta(g) = g$ является точным результатом. Ниже показано, что это действительно так.

Наиболее общий функциональный интеграл КЭД содержит в предэкспоненте *M* фотонных и 2*N* фермионных полей:

$$I_{M,2N} = \int DAD\bar{\psi}D\psi A_{\mu_1}(x_1)\dots \times$$
$$\times \dots A_{\mu_M}(x_M)\psi(y_1)\bar{\psi}(z_1)\dots\psi(y_N)\bar{\psi}(z_N) \times$$
$$\times \exp\left(-S\{A,\psi,\bar{\psi}\}\right), \quad (6)$$

где $S\{A, \psi, \bar{\psi}\}$ — евклидово действие,

$$S\{A,\psi,\bar{\psi}\} = \int d^4x \times \left[\frac{1}{4}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2 + \bar{\psi}(i\partial \!\!\!/ - m_0 + e_0 A\!\!\!/)\psi\right], \quad (7)$$

 e_0 и m_0 — затравочные заряд и масса; перечеркнутые символы отмечают свертки соответствующих величин с матрицами Дирака. Будем обозначать $K_{MN}(q_i, p_i)$ фурье-образы интегралов $I_{M,N}$, из которых исключены δ -функции сохранения импульса и выделены обычные множители, зависящие от тензорных индексов²; q_i и p_i — импульсы фотонов и электронов. Вводя функции Грина $G^{(M,N)} = K_{MN}/K_{00}$, можно определить интересующие нас «ампутированные» вершины $\Gamma^{(M,N)}$ с M фотонными и N электронными концами:

$$\Gamma^{(0,2)}(p) = 1/G^{(0,2)}(p) \equiv 1/G(p),$$

$$\Gamma^{(2,0)}(q) = 1/G^{(2,0)}(q) \equiv 1/D(q),$$

$$G^{(1,2)}(q, p, p') = D(q)G(p)G(p')\Gamma^{(1,2)}(q, p, p'), \qquad (8)$$

и т.д., где G(p) и D(q) — точные электронный и фотонный пропагаторы.

Мультипликативная перенормируемость вершины $\Gamma^{(M,N)}$ означает, что

$$\Gamma^{(M,N)}(q_i, p_i; e_0, m_0, \Lambda) =$$

$$= Z_3^{-M/2} Z_2^{-N/2} \Gamma_R^{(M,N)}(q_i, p_i; e, m), \quad (9)$$

т. е. ее расходимость при $\Lambda \to \infty$ исчезает после надлежащего выделения Z-факторов и перехода к перенормированным заряду e и массе m. Примем условия ренормировки на нулевом импульсе:

$$\left. \Gamma_R^{(0,2)}(p) \right|_{p \to 0} = \not \! \! p - m,$$

²⁾ Конкретный вид этих множителей несуществен, так как результаты не зависят от абсолютной нормировки е и m.

$$\Gamma_R^{(2,0)}(q)\Big|_{q\to 0} = q^2,$$

$$\Gamma_R^{(1,2)}(q,p,p')\Big|_{q,p,p'\to 0} = e,$$
(10)

где учтена обычная полюсная структура электронного и фотонного пропагаторов. Подстановка выражений (10) в формулу (9) определяет e, m, Z_2, Z_3 в терминах затравочных величин:

$$Z_{2} = \left(\frac{\partial}{\partial p} \Gamma^{(0,2)}(p;e_{0},m_{0},\Lambda)\Big|_{p=0}\right)^{-1},$$

$$Z_{3} = \left(\frac{\partial}{\partial q^{2}} \Gamma^{(2,0)}(q;e_{0},m_{0},\Lambda)\Big|_{q=0}\right)^{-1}, \quad (11)$$

$$m = -Z_{2} \Gamma^{(0,2)}(p;g_{0},m_{0},\Lambda)\Big|_{p=0},$$

$$e = Z_{2}Z_{3}^{1/2} \Gamma^{(1,2)}(q,p,p';e_{0},m_{0},\Lambda)\Big|_{q,p,p'=0}.$$

Функция Гелл-Манна-Лоу в используемой ренормировочной схеме определяется как

$$\beta(g) = \left. \frac{dg}{d\ln m^2} \right|_{e_0,\Lambda=\text{const}}, \quad g = e^2.$$
(12)

Из выражений (8) и определения функций Грина $G^{(M,N)}$ имеем

$$\Gamma^{(0,2)}(p) = \frac{K_{00}}{K_{02}(p)}, \quad \Gamma^{(2,0)}(q) = \frac{K_{00}}{K_{20}(q)},$$

$$\Gamma^{(1,2)} = \frac{K_{12}K_{00}^2}{K_{02}^2K_{20}},$$
(13)

где последнее соотношение — при q, p, p' = 0. Полагая при малых импульсах

$$K_{02}(p) = K_{02} + \tilde{K}_{02} \not\!\!p,$$

$$K_{20}(q) = K_{20} + \tilde{K}_{20} q^2,$$
(14)

имеем в силу (11)

$$Z_{2} = -\frac{K_{02}^{2}}{K_{00}\tilde{K}_{02}}, \quad Z_{3} = -\frac{K_{20}^{2}}{K_{00}\tilde{K}_{20}},$$

$$m = \frac{K_{02}}{\tilde{K}_{02}}, \quad g = -\frac{K_{12}^{2}K_{00}}{\tilde{K}_{02}^{2}\tilde{K}_{20}}.$$
(15)

Далее, отмечая штрихом дифференцирование по m_0 , имеем

$$\frac{dm}{dm_0} = \left(\frac{K_{02}}{\tilde{K}_{02}}\right)' = \frac{K'_{02}\tilde{K}_{02} - K_{02}\tilde{K}'_{02}}{\tilde{K}^2_{02}}.$$
 (16)

Поскольку дифференцирование в формуле (12) проводится при $e_0, \Lambda = \text{const}$, последние параметры удобно считать фиксированными на протяжении

всех вычислений; тогда m является функцией только m_0 и формулу (16) можно «перевернуть», т.е. считать выражением для производной dm_0/dm . Согласно определению β -функции (12) имеем

$$\beta(g) = \frac{m}{2} \left(-\frac{K_{12}^2 K_{00}}{\tilde{K}_{02}^2 \tilde{K}_{20}} \right)'_{m_0} \frac{dm_0}{dm}$$
(17)

и после преобразований получим

$$g = -\frac{K_{12}^2 K_{00}}{\tilde{K}_{02}^2 \tilde{K}_{20}},\tag{18}$$

$$\beta(g) = \frac{1}{2} \frac{K_{02}\tilde{K}_{02}}{K_{02}\tilde{K}'_{02} - K'_{02}\tilde{K}_{02}} \frac{K_{12}^2K_{00}}{\tilde{K}_{02}^2\tilde{K}_{20}} \times \left\{ \frac{2K'_{12}}{K_{12}} + \frac{K'_{00}}{K_{00}} - \frac{2\tilde{K}'_{02}}{\tilde{K}_{02}} - \frac{\tilde{K}'_{20}}{\tilde{K}_{20}} \right\}.$$
 (19)

Формулы (18), (19) определяют зависимость $\beta(g)$ в параметрической форме: их правые части зависят от параметров m_0 , g_0 , Λ , из которых два последних считаются фиксированными; выражая m_0 через gс помощью равенства (18) и подставляя в формулу (19), получим β как функцию g, g_0 и Λ , но фактическое отсутствие зависимости от последних двух параметров гарантируется общими теоремами (см., например, [3, 12]).

Согласно анализу работы [4], режим сильной связи для перенормированного взаимодействия связан с нулем одного из функциональных интегралов. Как ясно из формулы (18), предел $g \to \infty$ может быть достигнут двумя способами: устремлением к нулю \tilde{K}_{02} или \tilde{K}_{20} . При $\tilde{K}_{02} \to 0$ выражение (19) упрощается:

$$g = -\frac{K_{12}^2 K_{00}}{\tilde{K}_{02}^2 \tilde{K}_{20}}, \quad \beta(g) = -\frac{K_{12}^2 K_{00}}{\tilde{K}_{02}^2 \tilde{K}_{20}}, \qquad (20)$$

и параметрическое представление разрешается в виде

$$\beta(g) = g, \quad g \to \infty. \tag{21}$$

При $\tilde{K}_{20} \to 0$ имеем

$$g \propto \frac{1}{\tilde{K}_{20}}, \quad \beta(g) \propto \frac{1}{\tilde{K}_{20}^2},$$
 (22)

откуда

$$\beta(g) \propto g^2, \quad g \to \infty.$$
 (23)

Таким образом, для асимптотики $\beta(g)$ имеются две возможности: (21) и (23). Вторая возможность противоречит неравенству (5), тогда как первая находится в прекрасном согласии с результатами (4), полученными путем суммирования ряда теории возмущений. На наш взгляд, это дает достаточные основания считать (21) точным результатом для асимптотики $\beta(g)$. Это означает, что и общий вид β -функции (рисунок) установлен достаточно надежно. Если наблюдаемый заряд (относящийся к масштабам $L \gtrsim m^{-1}$) конечен, то рост постоянной тонкой структуры при малых L происходит в чистой электродинамике по закону $g \propto L^{-2}$.

Выше мы исходили из того, что механизм возникновения асимптотики β -функции такой же, как в теории φ^4 . Строго говоря, нельзя исключить возможность того, что режим сильной связи достигается за счет другого механизма, например за счет быстрого роста K_{12} . Однако такая возможность выглядит маловероятной: если провести грубую оценку интегралов, считая все поля локализованными на единичном масштабе длины,

$$K_{12} \sim \langle A \rangle \langle \psi \psi \rangle K_{00}, \quad K_{02} \sim K_{02} \sim \langle \psi \psi \rangle K_{00},$$

$$\tilde{K}_{20} \sim K_{20} \sim \langle A \rangle^2 K_{00},$$
(24)

то подстановка в формулу (18) дает $g \sim 1$. Изменение общего масштаба всех длин не влияет на величину g просто в силу ее безразмерности. Поэтому достигнуть больших значений g, изменяя амплитуды полей $A, \psi, \bar{\psi}$ или общий масштаб их пространственной локализации, не удается. По-видимому, единственная возможность состоит в том, что среднее $\langle A \rangle$ или $\langle \psi \bar{\psi} \rangle$ для одного из интегралов по каким-то причинам (например, из-за знакопеременности полей) оказывается аномально малым по сравнению с другими интегралами; но это возвращает нас к уже рассмотренным вариантам.

Аналогично [4], нули функциональных интегралов могут быть получены при комплексных g_0 с $|g_0| \ll 1$ из условия компенсации вклада тривиального вакуума с перевальным вкладом инстантонной конфигурации, имеющей минимальное действие. Последний вклад хорошо изучен в связи с вычислением асимптотики Липатова [9, 13–15] и имеет вид

$$[K_{M,2N}(q_i, p_i)]^{inst} =$$

$$= ic(q_i, p_i) \left(\frac{S_0}{g_0^2}\right)^b \exp\left(-\frac{S_0}{g_0^2}\right), \quad (25)$$

где S_0 — инстантонное действие, b = (M + r)/2, r — число нулевых мод. Полагая $t^2 = -S_0/g_0^2$, придем к выражениям того же типа, которые анализировались в работе [4]. Легко убедиться, что нули различных интегралов K_{MN} и их производных по m_0 реализуются в разных точках.

Использованный подход позволяет по-новому взглянуть на идеи Ландау и Померанчука [5]. Они заметили, что согласно формуле (1) при увеличении e_0 наблюдаемый заряд e выходит на значение $1/(\beta_2 \ln \Lambda^2/m^2)^{1/2}$, не зависящее от e_0 , и в силу соотношения $e^2 \propto e_0^2 D$ фотонный пропагатор имеет поведение $D \propto 1/e_0^2$. Такое поведение можно получить, сделав в функциональном интеграле (6) замену $A \rightarrow \tilde{A}/e_0$ и опустив в действии (7) квадратичный по A член. Если такая процедура оправдана уже при $e_0 \ll 1$, то она тем более верна

при $e_0 \gtrsim 1$, что и дает основания считать формулу

(1) применимой при произвольных e_0 . На качественном уровне эти соображения могут оказаться правильными³⁾ для действительных значений е₀, которые в них предполагались. Из аналогии с теорией φ^4 можно ожидать [4], что изменение ео вдоль действительной оси соответствует изменению *е* от нуля до конечного значения *e*_{max}. Если окажется, что $e_{max} \to 0$ при $\Lambda \to \infty$, то это и будет означать качественную справедливость формулы (1); исследования методом Монте-Карло [16] указывают на правильность такой картины в теории φ^4 . Для построения же теории с конечным взаимодействием на больших расстояниях требуется использование комплексных значений $e_0 \ge |e_0| \lesssim 1$ [4]: при этом несправедливо ни приведение к безразмерному виду функционального интеграла (обоснованное при $|e_0| \gg 1$), ни сама формула (1); последнее связано с тем, что, несмотря на возможность использования значений $|e_0| \ll 1$, теория возмущений неприменима из-за существенности инстантонного вклада.

Существует мнение, что для КЭД с N сортов фермионов в пределе $N \to \infty$ асимптотика $\beta(g)$ оказывается квадратичной, но на самом деле это не так. Коэффициенты разложения β -функции являются полиномами по N и имеют следующую структуру [17, 18]:

$$\beta(g) = \beta_2 N g^2 + \beta_3 N g^3 + \beta_4 (N^2 + aN) g^4 + \beta_5 (N^3 + bN^2 + cN) g^5 + \dots, \quad (26)$$

где $\beta_2, \beta_3, \beta_4, a, \ldots \sim 1$. Модель является точно решаемой в специфическом пределе $N \to \infty$, gN = const [19], т.е. нужно положить $g = \tilde{g}/N$,

³⁾ Их правильность на количественном уровне исключается неквадратичностью β -функции. Фактически пропорциональность $D \propto 1/e_0^2$ следует из приведения функционального интеграла к безразмерному виду только при $e_0 \gg 1$, тогда как та же зависимость, вытекающая из формулы (1) при $e_0 \ll 1$, может быть связана с другими причинами; при $e_0 \sim 1$ она по-видимому нарушается, но совпадение коэффициентов пропорциональности по порядку величины можно ожидать из условия сшивки.

 $\beta(g) = \tilde{\beta}(\tilde{g})/N$ и считать \tilde{g} фиксированным. Тогда $\tilde{\beta}(\tilde{g}) = \beta_2 \tilde{g}^2 + O(1/N)$ и при $N \to \infty$ β -функция эффективно оказывается однопетлевой. Использованная процедура справедлива для \tilde{g} = const или $g \sim 1/N$, но не дает никакой информации об области $g \sim 1$ и тем более $g \gg 1$. Поэтому никакие суждения об асимптотике β -функции не могут быть сделаны ⁴.

Автор признателен Л. П. Питаевскому и М. В. Садовскому за обсуждение результатов и критические замечания, а также участникам семинаров в ИТЭФ и ПИЯФ за интерес к работе.

Работа выполнена при финансовой поддержке РФФИ (грант № 06-02-17541).

ЛИТЕРАТУРА

- **1**. Л. Д. Ландау, А. А. Абрикосов, И. М. Халатников, ДАН СССР **95**, 497, 773, 1177 (1954).
- 2. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).
- **3**. А. А. Владимиров, Д. В. Ширков, УФН **129**, 407 (1979).
- 4. И. М. Суслов, ЖЭТФ **134**, 490 (2008).
- Л. Д. Ландау, И. Я. Померанчук, ДАН СССР 102, 489 (1955); И. Я. Померанчук, ДАН СССР 103, 1005 (1955).
- 6. И. М. Суслов, ЖЭТФ 120, 5 (2001).

- А. А. Погорелов, И. М. Суслов, ЖЭТФ 132, 406 (2007).
- А. А. Погорелов, И. М. Суслов, Письма в ЖЭТФ 86, 41 (2007).
- 9. И. М. Суслов, Письма в ЖЭТФ 74, 211 (2001).
- 10. N. V. Krasnikov, Nucl. Phys. B 192, 497 (1981).
- 11. H. Yamagishi, Phys. Rev. D 25, 464 (1982).
- E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in *Phase Transitions and Critical Phenomena*, ed. by C. Domb and M. S. Green, Academic, New York (1976), Vol. VI.
- 13. Л. Н. Липатов, ЖЭТФ 72, 411 (1977).
- 14. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76, 210 (1978).
- E. B. Bogomolny, V. A. Fateyev, and L. N. Lipatov, Sov. Sci. Rev. A — Physics Reviews, ed. by I. M. Khalatnikov, 2, 247 (1980).
- B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. B 113, 481 (1982).
- 17. S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Lett. B 256, 81 (1991).
- A. Palanques-Mestre and P. Pascual, Commun. Math. Phys. 95, 277 (1984).
- 19. M. Moshe and J. Zinn-Justin, Phys. Rept. 385, 69 (2003).

⁴⁾ Явное вычисление поправки O(1/N) к однопетлевому результату показывает [18], что эта поправка имеет периодические расходимости и не может считаться малой при произвольно больших N.