АСИМПТОТИКА β -ФУНКЦИИ В ТЕОРИИ φ^4 : СХЕМА БЕЗ КОМПЛЕКСНЫХ ПАРАМЕТРОВ

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

Поступила в редакцию 3 марта 2010 г.

Полученные ранее аналитические асимптотики при $g \to \infty$ для функции Гелл-Манна-Лоу $\beta(g)$ и аномальных размерностей в теории φ^4 основаны на параметрическом представлении типа g = f(t), $\beta(g) = f_1(t)$ (где $t \propto g_0^{-1/2}$ — бегущий параметр, связанный с затравочным зарядом g_0), которое упрощается в комплексной плоскости t вблизи нуля одного из функциональных интегралов. Ниже показано, что параметрическое представление имеет сингулярность при $t \to 0$, что позволяет получить аналогичные результаты при действительных значениях g_0 . Одновременно решается вопрос о правильном характере предельного перехода к режиму сильной связи; в частности, постоянство затравочной или перенормированной массы не является правильным условием предельного перехода. Дано частичное доказательство «теоремы о перенормируемости» для области сильной связи.

1. ВВЕДЕНИЕ

В недавних работах автора [1, 2] показано, что асимптотика функции Гелл-Манна–Лоу $\beta(g)$ при $g \to \infty$ для актуальных теорий поля может быть найдена аналитически. Выражение β -функции через функциональные интегралы приводит к параметрическому представлению

$$g = f(t), \quad \beta(g) = f_1(t), \tag{1}$$

где t — бегущий параметр, связанный с затравочным зарядом g_0 соотношением $t \propto g_0^{-1/2}$. Исследование (1) показывает, что бесконечные значения g связаны с обращением в нуль одного из функциональных интегралов; вблизи его корня выражения (1) сильно упрощаются и параметрическое представление разрешается в явном виде. Асимптотика β -функции в теории φ^4 [1] и КЭД [2] оказывается линейной, а аномальные размерности стремятся к постоянным пределам.

Обращение в нуль функциональных интегралов можно гарантировать при комплексных значениях t, соответствующих комплексным g₀. В связи с этим возникают вопросы об эрмитовости исходного гамильтониана, унитарности S-матрицы и т. д. На наш взгляд, здесь нет предмета для беспокойства: соотношения (1) выводятся для действительных g_0 (что обеспечивает правильную теорию возмущений), а затем аналитически продолжаются в комплексную плоскость. В силу перенормируемости теории затравочный заряд g_0 исключается из всех наблюдаемых величин и его комплексность при больших g не имеет значения: затравочная теория связана с искусственными конструкциями (типа вспомогательной решетки) и не имеет физического смысла.

Однако в научном сообществе имеется предубеждение против комплексных затравочных параметров, связанное с давней дискуссией по поводу модели Ли [3], в которой участвовали Паули, Гейзенберг и др. После работы [4] модель Ли была признана физически неудовлетворительной из-за существования состояний с отрицательной нормой («ghost states»). В недавних работах Бендера и др. [5, 6] показано, что модель Ли является вполне приемлемой физической теорией, но устаревшая точка зрения успела войти во многие учебники [7, 8]. Фактически же проблема комплексных затравочных параметров полностью решается в боголюбовской аксиоматической конструкции S-матрицы [9] (см. подробнее разд. 8).

Более существенный вопрос связан с приложениями теории φ^4 в физике конденсированного состояния; здесь решеточный затравочный гамильтониан имеет физический смысл и его параметры конечно

^{*}E-mail: suslov@kapitza.ras.ru

не могут быть комплексными. Поэтому режим сильной связи выглядит недостижимым, а найденные в работе [1] асимптотики ренормгрупповых функций — не имеющими физического смысла¹⁾.

Ниже показано, что при решеточной интерпретации функциональных интегралов параметрическое представление (1) имеет сингулярность в точке t = 0, которая обеспечивает режим сильной связи $g \to \infty$ (разд. 2, 3). Такая возможность выглядит более удовлетворительной с точки зрения физической интуиции, так как затравочный заряд g₀ стремится к бесконечности, а не к особой точке в комплексной плоскости; это решает вопрос о физической реализуемости режима сильной связи в физике конденсированного состояния. Асимптотика *β*-функции совпадает с полученной в работе [1], тогда как результаты для аномальных размерностей несколько различаются (разд. 4); однако это различие не имеет физического смысла (разд. 7). Исследование топологии траекторий в плоскости t (разд. 5) показывает, что в зависимости от выбора решетки они могут оставаться на действительной оси или уходить в комплексную плоскость. С теоретико-полевой точки зрения вопрос о действительности или комплексности затравочных параметров всецело связан с выбором ренормировочной схемы [11] и не имеет физического смысла. Для схемы, наиболее употребительной в теории фазовых переходов [12], выход в комплексную плоскость является неизбежным, а условность использования комплексных затравочных параметров — особенно очевидной (разд. 6).

Решеточные разложения, изучаемые в разд. 3, аналогичны высокотемпературным рядам в теории фазовых переходов [13]. В теоретико-полевом контексте они рассматривались в работах [14–17] и др.; при этом основное внимание уделялось исследованию связи перенормированных величин с затравочными, что требовало знания большого числа членов разложения и использования приближенных экстраполяционных методик. Однако физический интерес представляют соотношения перенормированных величин между собой (в соответствии с общей философией перенормируемости), которые оказываются более простыми (разд. 4). Кроме того, оставался нерешенным вопрос о правильном характере предельного перехода к режиму сильной связи; в частности, ни постоянство затравочной массы, ни постоянство перенормированной массы [15] не являются правильными условиями предельного перехода (разд. 4). Заметим, что указание на линейную асимптотику β -функции было получено еще в работе [16]; совсем недавно обнаружено, что линейная асимптотика согласуется с частным решением уравнений Дайсона-Швингера [18].

2. ПРЕДВАРИТЕЛЬНЫЕ СООБРАЖЕНИЯ

Рассмотрим n-компонентную теорию φ^4 с действием

$$S\{\varphi\} = \int d^d x \left\{ \frac{1}{2} \sum_{\alpha=1}^n (\nabla \varphi_\alpha)^2 + \frac{1}{2} m_0^2 \sum_{\alpha=1}^n \varphi_\alpha^2 + \frac{1}{4} u_0 \left(\sum_{\alpha=1}^n \varphi_\alpha^2 \right)^2 \right\},$$

$$u_0 = g_0 \Lambda^\epsilon, \quad \epsilon = 4 - d,$$

$$(2)$$

где g_0 и m_0 — затравочные заряд и масса, d — размерность пространства²⁾, Λ — параметр обрезания по импульсу. Наиболее общий функциональный интеграл этой теории содержит в предэкспоненте Mмножителей поля φ ,

$$Z^{(M)}_{\alpha_1...\alpha_M}(x_1,\ldots,x_M) = \int D\varphi \,\varphi_{\alpha_1}(x_1)\varphi_{\alpha_2}(x_2)\ldots$$
$$\ldots \varphi_{\alpha_M}(x_M) \exp\left(-S\{\varphi\}\right), \quad (3)$$

и будет обозначаться как $K_M\{p_i\}$ после перехода в импульсное представление и выделения δ -образных множителей,

$$Z^{(M)}_{\alpha_1...\alpha_M}(p_1,\ldots,p_M) = K_M\{p_i\} \mathcal{N} \,\delta_{p_1+\ldots+p_M} I_{\alpha_1...\alpha_M}, \quad (4)$$

где $I_{\alpha_1...\alpha_M}$ — сумма членов типа $\delta_{\alpha_1\alpha_2}\delta_{\alpha_3\alpha_4}...$ со всевозможными спариваниями, \mathcal{N} — число узлов решетки, на которой предполагается определенным функциональный интеграл. Интегралы $K_M\{p_i\}$, как правило, оцениваются при нулевых импульсах и лишь один интеграл $K_2(p)$ потребуется при малых p,

$$K_2(p) = K_2 - \tilde{K}_2 p^2 + \dots$$
 (5)

Вводя вершины $\Gamma^{(L,N)}$ с N внешними линиями поля φ и L внешними линиями взаимодействия³⁾, учитывая их мультипликативную перенормируемость [20]

¹⁾ Фактически они представляют интерес даже в этом случае, значительно упрощая процедуру суммирования расходящихся рядов, которая проводится при вычислении критических индексов (см. обсуждение в [10]).

²⁾ Предполагается условие $d \leq 4$, при котором теория φ^4 является перенормируемой; параметр ϵ не считается малым, если это не оговорено особо.

³⁾ Имеется в виду диаграммная техника, в которой взаимодействие обозначается пунктирными линиями [19].

$$\Gamma^{(L,N)}(p_i; g_0, m_0, \Lambda) = Z^{-N/2} \left(\frac{Z_2}{Z}\right)^{-L} \Gamma_R^{(L,N)}(p_i; g, m) \quad (6)$$

(g и m — перенормированные заряд и масса) и используя условия ренормировки на нулевых импульсах

$$\Gamma_{R}^{(0,2)}(p;g,m)\Big|_{p\to 0} = m^{2} + p^{2} + O(p^{4}),$$

$$\Gamma_{R}^{(0,4)}(p_{i};g,m)\Big|_{p_{i}=0} = gm^{\epsilon},$$
(7)

$$\Gamma_{R}^{(1,2)}(p_{i};g,m)\Big|_{p_{i}=0} = 1,$$

можно определить функцию Гелл-Манна-Лоу $\beta(g)$ и аномальные размерности $\eta(g), \eta_2(g)$:

$$\beta(g) = \frac{dg}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}},$$

$$\eta(g) = \frac{d\ln Z}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}},$$

$$\eta_2(g) = \frac{d\ln Z_2}{d\ln m} \bigg|_{g_0,\Lambda=\text{const}}.$$
(8)

Выражая эти функции через функциональные интегралы, для них можно получить параметрическое представление [1]⁴⁾

$$g = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2},$$
 (9)

$$\beta(g) = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2} \times \left\{ d + 2 \frac{K_4'/K_4 + K_0'/K_0 - 2K_2'/K_2}{K_2'/K_2 - \tilde{K}_2'/\tilde{K}_2} \right\}, \quad (10)$$

$$\eta(g) = -\frac{2K_2\tilde{K}_2}{K_2\tilde{K}_2' - K_2'\tilde{K}_2} \left[2\frac{K_2'}{K_2} - \frac{K_0'}{K_0} - \frac{\tilde{K}_2'}{\tilde{K}_2}\right], \quad (11)$$

$$\eta_2(g) = \frac{2K_2\tilde{K}_2}{K_2\tilde{K}_2' - K_2'\tilde{K}_2} \times \left\{ \frac{K_0''K_2 - K_0K_2''}{K_0'K_2 - K_0K_2'} - 2\frac{K_2'}{K_2} \right\}, \quad (12)$$

где штрихами отмечаются производные по m_0^2 . Правые части (9)–(12) зависят от трех параметров g_0 , m_0 и Λ , один из которых можно принять в качестве бегущего; если выразить его через g с помощью соотношения (9) и исключить из (10)–(12), то зависимость от остальных двух параметров исчезает согласно общим теоремам [20].

Согласно формуле (9), большие значения g могут быть достигнуты вблизи корней K_2 или \tilde{K}_2 . При $\tilde{K}_2 \rightarrow 0$ правые части (10)–(12) сильно упрощаются и параметрическое представление разрешается в виде [1]

$$\beta(g) = dg, \quad \eta(g) = 2, \quad \eta_2(g) = 0 \quad (g \to \infty).$$
 (13)

Аналогичные результаты получаются при $K_2 \rightarrow 0$, но этот предел мы считаем нефизическим, так как он не обеспечивает непрерывного перехода к четырехмерному случаю ввиду отсутствия расходимости в уравнении (9) при d = 4.

Связь предела сильной связи $g \to \infty$ с нулем одного из функциональных интегралов установлена в работе [1] из аналогии с нуль-мерным случаем. Фактически это может быть сделано более строго. Проводя дискретизацию пространства, запишем уравнение (2) в виде решеточной суммы

$$S\{\varphi\} = \frac{1}{2}a^d \sum_{\mathbf{x},\mathbf{x}'} J_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'} + \frac{1}{2}m_0^2a^d \sum_{\mathbf{x}}\varphi_{\mathbf{x}}^2 + \frac{1}{4}g_0a^{2d-4} \sum_{\mathbf{x}}\varphi_{\mathbf{x}}^4, \quad (14)$$

где мы ограничились случаем n = 1 и приняли $\Lambda = a^{-1}$ (a — постоянная решетки). Делая замену

$$\varphi \longrightarrow \varphi \left(g_0 a^{2d-4}/4 \right)^{-1/4}$$
 (15)

и вводя параметр

$$t = (1/g_0)^{1/2}, (16)$$

получим функциональный интеграл (3) в виде

$$Z^{(M)}\{\mathbf{x}_i\} = (2t)^{\frac{N+M}{2}} \int \left(\prod_{\mathbf{x}} d\varphi_{\mathbf{x}}\right) \varphi_{\mathbf{x}_1} \dots \varphi_{\mathbf{x}_M} \times \\ \times \exp\left\{-t \sum_{\mathbf{x}, \mathbf{x}'} J_{\mathbf{x}-\mathbf{x}'} \varphi_{\mathbf{x}} \varphi_{\mathbf{x}'} - \\ - t m_0^2 \sum_{\mathbf{x}} \varphi_{\mathbf{x}}^2 - \sum_{\mathbf{x}} \varphi_{\mathbf{x}}^4\right\}. \quad (17)$$

⁴⁾ Выражение для $\eta_2(g)$ написано в работе [1] неправильно из-за того, что в тождестве Уорда (55) предполагается другое определение массы; его правильная запись $Z_2^{-1} = \Gamma_{12}(0) =$ $= d\Gamma_2(0)/dm_0^2 = (K_0/K_2)'$. В результате в формулах (61) и (62) работы [1] получим соответственно $\eta_2(g) = 0$ и $\eta_2(g) = 4$.

Здесь и в дальнейшем принимаем a = 1, измеряя $J_{\mathbf{x}-\mathbf{x}'}$ и m_0^2 в единицах Λ^2 . При конечном числе интегрирований \mathcal{N} интеграл сходится для всех t и оказывается регулярным во всей конечной части комплексной плоскости t. Сингулярности могут возникать лишь в пределе $\mathcal{N} \to \infty$, но это происходит лишь в точках фазовых переходов, когда $m^2 = 0$ и корреляционный радиус ξ бесконечен; в этом случае реально необходим предельный переход к бесконечному объему системы, который оказывается сингулярным. Если же $m^2 \neq 0$, то ввиду конечности корреляционного радиуса ξ размер системы \mathcal{L} может быть выбран большим, но конечным: при выполнении условия

$$\mathcal{L} \gg \xi \gg a \tag{18}$$

функциональный интеграл хорошо аппроксимируется своим конечномерным аналогом. В рассматриваемом случае величина m^2 заведомо конечна (фактически $m^2 \to \infty$ при $g \to \infty$) и перехода к пределу $\mathcal{N} \to \infty$ не требуется. Поэтому интегралы K_M и их производные регулярны в комплексной плоскости t и появление бесконечностей в правых частях (9)–(12) может быть связано только с нулями знаменателей; в частности, в формуле (9) они возникают лишь вблизи корня K_2 или \tilde{K}_2 . Параметр t в дальнейшем считаем бегущим параметром параметрического представления.

При переходе от формулы (2) к уравнению (14) мы исходили из соответствия

$$-\varphi(x)\nabla^{2}\varphi(x) = \varphi(x)\hat{p}^{2}\varphi(x) \to \varphi_{\mathbf{x}}\epsilon(\hat{p})\varphi_{\mathbf{x}} =$$
$$= \sum_{\mathbf{x}'} J_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'}, \quad (19)$$

где \hat{p} — оператор импульса, $\epsilon(p)$ — затравочный спектр,

$$\epsilon(p) = \sum_{\mathbf{x}} J_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} = \epsilon(0) + p^2 + O(p^4), \qquad (20)$$

и учтено, что $\exp\{i\hat{\mathbf{p}}\cdot\mathbf{x}\}$ есть оператор сдвига на вектор **x**. Интегралы перекрытия $J_{\mathbf{x}}$ предполагаются быстро убывающими с ростом $|\mathbf{x}|$, так что спектр (20) является регулярным; считаем $J_0 = 0$, а коэффициент при p^2 принимаем равным единице для соответствия с континуальным пределом (см. (19)), учитывая, что $\epsilon(0)$ можно включить в перенормировку m_0^2 .

Ниже исследуется сингулярность параметрического представления (9)–(12) при $t \to 0$, которая имеет простое происхождение. При $g_0 \gg 1$ в (17) возможно разложение по градиентному члену $tJ_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'}$. В нулевом порядке по t интеграл $Z^{(2)}$ δ -образен в координатном представлении, $Z^{(2)}(\mathbf{x}, \mathbf{x}') \sim \delta_{\mathbf{xx}'}$, и его фурье-образ не имеет импульсной зависимости; последняя появляется лишь в первом порядке по t. Поэтому в разложении (5) интеграл \tilde{K}_2 имеет дополнительную малость по сравнению с K_2 , т. е. $K_2/\tilde{K}_2 \sim 1/t$, что приводит к сингулярности в формулах (9), (10). Эта сингулярность оказывается более сложной, чем вблизи корня \tilde{K}_2 в комплексной плоскости, когда остальные интегралы и их производные остаются конечными [1]. При $t \to 0$ интеграл K_M имеет дополнительный множитель, пропорциональный $t^{M/2}$, по сравнению с K_0 (см. (17)), а дифференцирование по m_0^2 дает множитель t, поэтому сингулярность в уравнениях (9)–(12) требует аккуратного исследования.

3. РЕШЕТОЧНЫЕ РАЗЛОЖЕНИЯ

При разложении функционального интеграла (17) по градиентному члену $tJ_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'}$ возникают средние от произведения полей $\varphi_{\mathbf{x}_1}\varphi_{\mathbf{x}_2}\dots$ по распределению⁵⁾

$$P\{\varphi\} \sim \prod_{\mathbf{x}} \exp\left\{-tm_0^2 \varphi_{\mathbf{x}}^2 - \varphi_{\mathbf{x}}^4\right\}.$$
(21)

Такие средние отличны от нуля лишь при частично (или полностью) совпадающих координатах и расписываются по схеме

$$\begin{split} \langle \varphi_{\mathbf{x}_{1}} \varphi_{\mathbf{x}_{2}} \varphi_{\mathbf{x}_{3}} \varphi_{\mathbf{x}_{4}} \rangle &= \langle \varphi_{\mathbf{x}_{1}}^{2} \rangle \langle \varphi_{\mathbf{x}_{3}}^{2} \rangle \delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{3}\mathbf{x}_{4}} (1 - \delta_{\mathbf{x}_{1}\mathbf{x}_{3}}) + \\ &+ \langle \varphi_{\mathbf{x}_{1}}^{2} \rangle \langle \varphi_{\mathbf{x}_{2}}^{2} \rangle \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{2}\mathbf{x}_{4}} (1 - \delta_{\mathbf{x}_{1}\mathbf{x}_{2}}) + \\ &+ \langle \varphi_{\mathbf{x}_{1}}^{4} \rangle \langle \varphi_{\mathbf{x}_{2}}^{2} \rangle \delta_{\mathbf{x}_{1}\mathbf{x}_{4}} \delta_{\mathbf{x}_{2}\mathbf{x}_{3}} (1 - \delta_{\mathbf{x}_{1}\mathbf{x}_{2}}) + \\ &+ \langle \varphi_{\mathbf{x}_{1}}^{4} \rangle \delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{1}\mathbf{x}_{4}} = \\ &= \langle \varphi^{2} \rangle \langle \varphi^{2} \rangle \left(\delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{3}\mathbf{x}_{4}} + \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{2}\mathbf{x}_{4}} + \delta_{\mathbf{x}_{1}\mathbf{x}_{4}} \delta_{\mathbf{x}_{2}\mathbf{x}_{3}} \right) + \\ &+ \left[\langle \varphi^{4} \rangle - 3 \langle \varphi^{2} \rangle \langle \varphi^{2} \rangle \right] \delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{1}\mathbf{x}_{4}}, \quad (22) \end{split}$$

где средние $\langle \varphi^{2k} \rangle$ определяются формулой

$$\langle \varphi^{2k} \rangle = \frac{I_{2k}}{I_0},$$

$$I_{2k} = \int_{-\infty}^{\infty} d\varphi \,\varphi^{2k} \exp\left\{-tm_0^2 \varphi^2 - \varphi^4\right\}.$$
(23)

Следуя этой схеме, нетрудно получить

$$Z^{(0)} = (2t)^{\mathcal{N}/2} I_0^{\mathcal{N}} \left[1 - t\mathcal{N} \frac{I_2}{I_0} J_0 + \dots \right],$$

⁵⁾ По техническим причинам член $\sim tm_0^2$ удобно сохранять в экспоненте. Фактически это не является превышением точности, так как m_0 является независимым параметром и tm_0^2 может быть не малым при $t \ll 1$; сохранение члена $\sim tm_0^2$ в экспоненте расширяет область применимости разложений, что окажется существенным в дальнейшем (разд. 4).

$$Z^{(2)}(\mathbf{x}_{1}\mathbf{x}_{2}) = (2t)^{\mathcal{N}/2} I_{0}^{\mathcal{N}} \cdot 2t \times \\ \times \left\{ \frac{I_{2}}{I_{0}} \delta_{\mathbf{x}_{1}\mathbf{x}_{2}} - 2t \frac{I_{2}^{2}}{I_{0}^{2}} J_{\mathbf{x}_{1}-\mathbf{x}_{2}} + \dots \right\}, \quad (24)$$

$$Z^{(4)}(\mathbf{x}_{1}\ldots\mathbf{x}_{4}) = (2t)^{\mathcal{N}/2} I_{0}^{\mathcal{N}} \cdot (2t)^{2} \times \\ \times \left\{ \frac{I_{2}^{2}}{I_{0}^{2}} \left(\delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{3}\mathbf{x}_{4}} + \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{2}\mathbf{x}_{4}} + \delta_{\mathbf{x}_{1}\mathbf{x}_{4}} \delta_{\mathbf{x}_{2}\mathbf{x}_{3}} \right) + \\ + \left(\frac{I_{4}}{I_{0}} - 3 \frac{I_{2}^{2}}{I_{0}^{2}} \right) \delta_{\mathbf{x}_{1}\mathbf{x}_{2}} \delta_{\mathbf{x}_{1}\mathbf{x}_{3}} \delta_{\mathbf{x}_{1}\mathbf{x}_{4}} + \dots \right\}.$$

Поправочный член ~ $\mathcal{N}t \ K Z^{(0)}$ исчезает в силу принятого соглашения $J_0 = 0$. В общем случае члены, содержащие \mathcal{N} , формально возникают при разложении, но соответствуют «несвязным диаграммам», когда множители $\varphi_{\mathbf{x}}$, возникающие от разложения экспоненты в выражении (17), усредняются независимо от множителей $\varphi_{\mathbf{x}_1} \dots \varphi_{\mathbf{x}_M}$, стоящих в предэкспоненте. Легко понять, что вклад несвязных диаграмм факторизуется во всех $Z^{(M)}$ в виде одинакового множителя и сокращается при переходе к отношениям функциональных интегралов. Поэтому разложения типа (24) справедливы при $t \ll 1$, а не при более сильном условии $\mathcal{N}t \ll 1$.

Переходя в импульсное представление и вводя обозначения K_M согласно формуле (4), получим

$$K_{0} = (2t)^{\mathcal{N}/2} I_{0}^{\mathcal{N}},$$

$$K_{2}(p) = (2t)^{\mathcal{N}/2} I_{0}^{\mathcal{N}} \cdot 2t \left\{ \frac{I_{2}}{I_{0}} - 2t \frac{I_{2}^{2}}{I_{0}^{2}} \epsilon(p) \right\},$$

$$K_{4}\{p_{i}\} = (2t)^{\mathcal{N}/2} I_{0}^{\mathcal{N}} \cdot (2t)^{2} \frac{1}{3} \left\{ \left(\frac{I_{4}}{I_{0}} - 3 \frac{I_{2}^{2}}{I_{0}^{2}} \right) + \frac{I_{2}^{2}}{I_{0}^{2}} \mathcal{N} \left(\delta_{p_{1}+p_{2}} + \delta_{p_{1}+p_{3}} + \delta_{p_{1}+p_{4}} \right) \right\}.$$
(25)

Предел $p_i \to 0$ в $K_4\{p_i\}$ берется в соответствии с принятым в работе [1] соглашением: полагая $p_i \sim \mu$ так, чтобы исключить специальные равенства типа $p_1 + p_2 = 0$, и устремляя μ к нулю. Используя разложение для $\epsilon(p)$ (20) и учитывая определение (5) для K_2 и \tilde{K}_2 , имеем

$$\frac{K_2}{K_0} = 2t \frac{I_2}{I_0}, \quad \frac{\tilde{K}_2}{K_0} = (2t)^2 \frac{I_2^2}{I_0^2}, \\
\frac{K_4}{K_0} = (2t)^2 \left(\frac{I_4}{3I_0} - \frac{I_2^2}{I_0^2}\right).$$
(26)

Аналогичные вычисления в *n*-компонентном случае дают

$$\frac{K_2}{K_0} = 2t \frac{I_2}{nI_0}, \quad \frac{K_2}{K_0} = (2t)^2 \frac{I_2^2}{nI_0^2},$$

$$\frac{K_4}{K_0} = (2t)^2 \frac{1}{n^2} \left(\frac{n}{n+2} \frac{I_4}{I_0} - \frac{I_2^2}{I_0^2}\right),$$
(27)

где интегралы I_{2k} определяются как

$$I_{2k} = \int_{0}^{\infty} d\varphi \,\varphi^{n-1+2k} \exp\left\{-tm_{0}^{2}\varphi^{2} - \varphi^{4}\right\}.$$
 (28)

Переписывая (10)-(12) в виде

$$\beta(g) = -\left(\frac{K_2}{\tilde{K}_2}\right)^{d/2} \frac{K_4 K_0}{K_2^2} \left\{ d + 2 \frac{\left(\ln K_4 K_0 / K_2^2\right)'}{\left(\ln K_2 / \tilde{K}_2\right)'} \right\},$$

$$\eta(g) = 2 \frac{\left(\ln K_2 / K_0\right)' + \left(\ln K_2 / \tilde{K}_2\right)'}{\left(\ln K_2 / \tilde{K}_2\right)'},$$
 (29)

$$\eta_2(g) = -2 \frac{\left(\ln K_0 / K_2\right)'' + \left[\left(\ln K_0 / K_2\right)'\right]^2}{\left(\ln K_2 / \tilde{K}_2\right)' \left(\ln K_0 / K_2\right)'}$$

и дифференцируя по m_0^2 с учетом соотношения

$$I'_{2k} = -tI_{2k+2}, (30)$$

получим

$$g = \left(\frac{n}{2t}\frac{I_0}{I_2}\right)^{d/2} \left(1 - \frac{n}{n+2}\frac{I_4I_0}{I_2^2}\right),$$

$$\frac{\beta(g)}{g} = d + 2\frac{\frac{I_6I_2}{I_0^2} - \frac{2I_4^2}{I_0^2} + \frac{I_2^2I_4}{I_0^3}}{\left(\frac{I_4}{I_0} - \frac{n+2}{n}\frac{I_2^2}{I_0^2}\right)\left(\frac{I_2^2}{I_0^2} - \frac{I_4}{I_0}\right)}, \quad (31)$$

$$\eta_2(g) = 2\frac{\frac{I_6I_2}{I_0^2} - \frac{2I_4^2}{I_0^2} + \frac{I_2^2I_4}{I_0^3}}{\left(\frac{I_2^2}{I_0^2} - \frac{I_4}{I_0}\right)^2}, \quad \eta(g) = 0.$$

Результаты можно представить в компактной форме, если ввести функции $g_{zero}(t)$ и $\beta_{zero}(t)$, соответствующие нуль-мерному случаю [1], которые имеют вид, показанный на рис. 1:

$$g = \left(\frac{n}{2t} \frac{I_0}{I_2}\right)^{d/2} g_{zero}(tm_0^2),$$

$$\beta(g) = \left(\frac{n}{2t} \frac{I_0}{I_2}\right)^{d/2} \left[dg_{zero}(tm_0^2) + \beta_{zero}(tm_0^2)\right], \quad (32)$$

$$\eta_2(g) = \frac{\beta_{zero}(tm_0^2)}{g^* - g_{zero}(tm_0^2)}, \quad \eta(g) = 0,$$

где $g^* = 2/(n+2)$. Разрешая параметрическое представление в пределе $t \to 0$, получим асимптотики

$$\beta(g) = \left[d + \frac{\beta_{zero}(0)}{g_{zero}(0)}\right] g,$$

$$\eta_2(g) = \frac{\beta_{zero}(0)}{g^* - g_{zero}(0)}, \quad \eta(g) = 0 \quad (g \to \infty),$$
(33)

Рис.1. Качественное поведение функций $g_{zero}(t)$ и $\beta_{zero}(t)$, соответствующих нуль-мерному случаю [1]

аналогичные формуле (13), т.е. реализуется линейное поведение для β -функции и выход на постоянные пределы для аномальных размерностей. Подстановка численных значений при n = 1, d = 4 дает $\beta(g) = 2.29g$ в согласии с работой [16].

Результат (33) не является, однако, окончательным. Действительно, вместо предела $t \to 0$ при постоянной затравочной массе можно рассмотреть предельный переход при условии $tm_0^2 \to \text{const}$; при этом вся структура теории останется неизменной, но результат для асимптотики будет другой. Возникает вопрос о правильном характере предельного перехода, соответствующего режиму сильной связи.

4. ИНТЕРПРЕТАЦИЯ ФУНКЦИОНАЛЬНЫХ ИНТЕГРАЛОВ

В рамках диаграммной техники связь перенормированной массы с затравочной определяется разложением

$$Z^{-1}m^2 = m_0^2 + u_0 \,\frac{n+2}{2} \int \frac{d^d k}{(2\pi)^d} \,\frac{1}{k^2 + m^2} + \dots \,, \ (34)$$

где вклад *N*-го порядка по u_0 имеет размерность по импульсу $k^{2-\epsilon N}$ и при d > 2 определяется верхним пределом, оказываясь порядка $\Lambda^{2-\epsilon N}$; вспоминая соотношение $u_0 = g_0 \Lambda^{\epsilon}$ (см. (2)), получим разложение вида

$$Z^{-1}m^{2} = m_{0}^{2} + \Lambda^{2} \left(A_{1}g_{0} + A_{2}g_{0}^{2} + A_{3}g_{0}^{3} + \dots \right) + O\left(m^{2}g_{0}(\Lambda/m)^{\epsilon} \right).$$
(35)

Обычно полагают

$$m_0^2 = m_c^2 + \delta m_0^2, \tag{36}$$

где m_c^2 определяется из условия $m^2 = 0$ и при $g_0 \ll$ $\ll 1$ определяется первым членом разложения в (35), $m_c^2 = -A_1 g_0 \Lambda^2$. Поэтому переход к континуальному пределу $\Lambda \to \infty$ нужно осуществлять при условии

$$m^2 = \text{const}, \quad -m_0^2 \sim g_0 \Lambda^2 \to \infty.$$
 (37)

По аналогии, такое же условие стали принимать при исследовании предела сильной связи $g_0 \to \infty$ [15, 21]; такой способ действий исходит из правильного интуитивного представления о том, что осуществлять предельный переход при $m_0^2 = \text{const}$ «не очень хорошо», но имеет очевидные дефекты.

1) Проводится незаконная экстраполяция зависимости $m_c^2 \propto g_0$ в область сильной связи.

2) Уравнение $m^2 = 0$ в области сильной связи может вообще не иметь решений (см. ниже (39)), что делает бессмысленным разбиение (36).

3) Условие постоянства перенормированной массы не является физически мотивированным: если частицы имеют конечную массу *m* в области слабой связи, то при усилении взаимодействия она перенормируется и может как возрастать, так и убывать.

Дефектность такого образа действий обычно осознавалась авторами и предельный переход при условии (37) получил название «изинговского предела» [21]. Из сказанного ясно, что вопрос о правильном характере предельного перехода в область сильной связи фактически остается открытым.

В рамках параметрического представления (9)-(12) указанная проблема встает в несколько иной плоскости. Недостаток результатов типа (32) состоит в том, что правые части формул зависят от двух независимых параметров t и tm_0^2 ; при исключении одного из них в пользу g остается зависимость от m_0^2 , которая должна отсутствовать согласно общим теоремам [20]. Возникает вопрос о разрешении этого противоречия⁶.

В действительности, конечно, никакого противоречия нет, так как в общих теоремах предполагается

⁶⁾ Для результата (32) зависимость от m_0^2 можно исключить, делая замену $tm_0^2 \rightarrow t$ и переопределяя g и $\beta(g)$ на одинаковый множитель. Однако это не решает проблему в общем случае: к уравнению (32) имеются регулярные поправки по t, содержащие в качестве коэффициентов функции от tm_0^2 .

Рис.2. Зависимость перенормированной массы от затравочной в области сильной связи

надлежащим образом проведенный переход к континуальному пределу Л → ∞. Физически это означает выполнение условия

$$m^2 \ll \Lambda^2,$$
 (38)

которое эквивалентно условию $\xi \gg a$ для корреляционного радиуса; при этом на характерном масштабе изменения поля имеется много узлов решетки и ее дальнейшее измельчение не имеет значения.

В рамках разложений разд. 3 для перенормированной массы справедлив результат (см. формулу (53) в [1])

$$m^{2} = \frac{K_{2}}{\tilde{K}_{2}} = \frac{n}{2t} \frac{I_{0}}{I_{2}} =$$

$$= \begin{cases} m_{0}^{2}, & tm_{0}^{2} \gg 1, \\ \sim 1/t, & |tm_{0}^{2}| \lesssim 1, \\ \sim 1/t^{2} |m_{0}^{2}|, & -tm_{0}^{2} \gg 1, \end{cases}$$
(39)

(рис. 2), из которого ясно, что для выполнения условия $m^2 \ll 1$ (соответствующего (38) в размерных единицах) необходимо принять, что

$$tm_0^2 = -\kappa, \quad \kappa \gg 1. \tag{40}$$

Заменой $\varphi^2_{\bf x}\to\kappa\varphi^2_{\bf x}/2$ экспонента в (17) преобразуется к виду

$$\exp\left\{-\frac{1}{2}t\kappa\sum_{\mathbf{x},\mathbf{x}'}J_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'}\right\}\times\\\times\prod_{\mathbf{x}}\exp\left\{\frac{1}{4}\kappa^{2}\left(2\varphi_{\mathbf{x}}^{2}-\varphi_{\mathbf{x}}^{4}\right)\right\},\quad(41)$$

ЖЭТФ, том **138**, вып. 3 (9), 2010

где последний множитель локализован вблизи $\varphi_{\mathbf{x}}^2 = 1$ и может быть заменен на $A\delta(\varphi_{\mathbf{x}}^2 - 1)$; значение константы A несущественно, так как она сокращается для отношения двух интегралов, и можно принять A = 1. В результате формула (17) преобразуется к виду

$$Z_{M}\{\mathbf{x}_{i}\} = (t\kappa)^{\frac{N+M}{2}} \int \left(\prod_{\mathbf{x}} d\varphi_{\mathbf{x}}\right) \varphi_{\mathbf{x}_{1}} \dots \varphi_{\mathbf{x}_{M}} \times \\ \times \exp\left\{-\frac{1}{2}t\kappa \sum_{\mathbf{x},\mathbf{x}'} J_{\mathbf{x}-\mathbf{x}'}\varphi_{\mathbf{x}}\varphi_{\mathbf{x}'}\right\} \prod_{\mathbf{x}} \delta(\varphi_{\mathbf{x}}^{2}-1) \quad (42)$$

и функциональный интеграл превращается в изинговскую сумму по значениям $\varphi_{\mathbf{x}} = \pm 1$. В *n*-компонентном случае возникает δ -функция вида $\delta(|\varphi_{\mathbf{x}}|^2 - 1)$, фиксирующая значение модуля $|\varphi_{\mathbf{x}}|^2 =$ $= \sum_{\alpha} \varphi_{\alpha,\mathbf{x}}^2$ и вместо модели Изинга получается σ -модель [28].

Теперь функциональные интегралы являются функциями одной переменной $t\kappa$ и правые части (9)–(12) зависят только от нее; это определяет ренормгрупповые функции, зависящие только от g. При физической мотивации предельного перехода мы исходили из условий

$$t \ll 1, \quad \kappa \gg 1, \quad t\kappa \gg 1,$$
 (43)

которые обеспечивали (38), но фактически при выводе выражения (42) использовались лишь два первых условия⁷⁾, т. е. оно справедливо при

$$t \ll 1, \quad \kappa \gg 1, \quad t\kappa$$
 — произвольно. (44)

Это позволяет использовать уравнение (42) в области $t\kappa \ll 1$, в которой возможны градиентные разложения и достигаются большие значения перенормированного заряда g. Учитывая формулы (39), (40), приходим к выводу, что режим сильной связи теории φ^4 соответствует пределу

$$t \to 0, \quad tm_0^2 \to -\infty, \quad tm^2 \to 0, \quad m^2 \to \infty, \quad (45)$$

очевидным образом не совпадающему с формулой (37). Возвращаясь к параметрическому представлению (32) и полагая

$$-tm_0^2 = \kappa \gg 1,\tag{46}$$

получим

$$g = \left(\frac{n}{t\kappa}\right)^{d/2} g^*, \quad \beta(g) = \left(\frac{n}{t\kappa}\right)^{d/2} dg^*,$$

$$\eta_2(g) = \left.\frac{\beta_{zero}(-\kappa)}{g^* - g_{zero}(-\kappa)}\right|_{\kappa \to \infty} = -4,$$
(47)

7) Условие $t\ll 1$ нужно для того чтобы флуктуации $|\varphi_{\mathbf{x}}|^2$ в градиентном члене были несущественны.

При оценке последнего предела в (47) учтено, что

$$g_{zero}(t) = g^* - \frac{2n}{n+2} \frac{1}{t^2},$$

$$\beta_{zero}(t) = -\frac{8n}{n+2} \frac{1}{t^2}, \quad t \to \infty,$$
(49)

где использованы определения $\beta_{zero}(t)$, $g_{zero}(t)$ и формулы (30) работы [1]. Любопытно, что результат для $\beta(g)$ совпадает с формулой (13); различие результатов для $\eta(g)$ и $\eta_2(g)$ обсуждается в разд. 7.

Заметим, что представление (42) для функциональных интегралов можно использовать для вычисления не только ренормгрупповых функций, но и наблюдаемых величин. При этом последние получаются в виде

$$A_{obs} = \Lambda^{d_A} f_A(t\kappa), \tag{50}$$

где d_A — физическая размерность величины A_{obs} . Используя аналогичные выражения для g и m,

$$g = f_g(t\kappa), \quad m^2 = \Lambda^2 f_m(t\kappa), \tag{51}$$

результат (50) можно представить в виде

$$A_{obs} = m^{d_A} F(g), (52)$$

не содержащем затравочных параметров g_0 , m_0 , Λ , т. е. формула (52) выражает собой «теорему о перенормируемости» для области сильной связи⁸⁾. Подчеркнем, что мы не переходим к континуальному пределу в затравочной теории и сохраняем решетку как удобный вычислительный инструмент, исключая из физических результатов лишь постоянную решетки *a*. Раскладывая экспоненту в уравнении (42) по градиентному члену, можно получать конструктивные разложения (52) по отрицательным степеням *g*.

Асимптотика β -функции в теории φ^4

Рис. 3. Прохождение регулярной точки t_0 при условиях $f'(t_0) \neq 0$ (*a*), $f'(t_0) = 0$, $f''(t_0) \neq 0$ (*b*), $f'(t_0) = 0$, $f''(t_0) = 0$, $f''(t_0) \neq 0$ (*b*). Сплошные линии — направления возрастания f(t), штриховые — направления убывания

5. ТОПОЛОГИЯ ТРАЕКТОРИЙ В ПЛОСКОСТИ *t*

Поскольку результаты (48) и (13) различаются в отношении функций $\eta(g)$ и $\eta_2(g)$, то представляет интерес выяснить условия их реализации. Для этого требуется более детальный анализ параметрического представления (1).

Будем считать, что бегущий параметр t движется по некоторой непрерывной траектории в комплексной плоскости, вдоль которой соотношение g = f(t) обеспечивает действительность перенормированного заряда д и его монотонное возрастание. Пусть t_0 — некоторая точка траектории. Если $f'(t_0) \neq 0$, то существует ровно одно направление прохода точки t_0 , вдоль которого g остается действительным (рис. 3*a*): если траектория каким-то образом пришла в точку t₀, то она проходит ее без изменения направления. Если $f'(t_0) = 0$, $f''(t_0) \neq 0$, то действительность g имеет место вдоль двух взаимно перпендикулярных прямых: есть два направления возрастания и два направления убывания f(t) (рис. 36). Поэтому траектория, пришедшая в точку t_0 , должна повернуть под углом $\pm 90^\circ$. Если $f'(t_0) = 0, f''(t_0) = 0, f'''(t_0) \neq 0$, то имеются три направления роста и три направления убывания f(t): траектория, пришедшая в точку t_0 , может продолжаться в том же направлении или повернуть под углом ±120° (рис. 3в) и т. д. Легко видеть, что в регулярной для функции f(t) точке траектория не может закончиться — всегда есть направление для ее продолжения. Она может закончиться лишь в сингулярной точке t_c (конечной или бесконечной), при приближении к которой *g* неограниченно возрастает, оставаясь действительным.

Как ясно из формулы (9), конечные сингулярные точки t_c связаны с нулями интегралов K_2 и \tilde{K}_2 . Согласно [1], для каждого функционального интеграла существует бесконечное количество нулей, расположенных вдоль лучей $\arg t = \pm 3\pi/4$ и сгущающихся

⁸⁾ Для полного доказательства перенормируемости нужно исслеловать вопрос о возможности исключения из результатов типа (52) информации о конкретном виде интегралов перекрытия J_x. Заметим, что в классических теоремах о перенормируемости [9, 22] независимость от Л доказывается не для самих величин (в сильном смысле), а для их коэффициентов разложения по д (в слабом смысле). Сильное и слабое утверждение эквивалентны, если существует однозначная процедура суммирования расходящихся рядов, что, на наш взгляд, имеет место [23]. Однако при установлении этой процедуры приходится исследовать аналитические свойства борелевских образов и, в частности, доказывать отсутствие [24] ренормалонных сингулярностей [25, 26], что требует перенормируемости именно в сильном смысле (см. комментарии в конце работы [27]). Эквивалентность сильного и слабого утверждений, по-видимому, решает проблему зависимости от J_x, поскольку такая зависимость отсутствует в коэффициентах разложения

Рис.4. Фрагмент комплексной плоскости t вдоль луча $\arg t = \pm 3\pi/4$. Траектории начинаются в нулях интегралов K_0 или K_4 и заканчиваются в нулях K_2 и \tilde{K}_2

на бесконечности. Изменению g от 0 до ∞ соответствует бесконечное множество траекторий, начинающихся в нулях K_0 или K_4 и заканчивающихся в нулях K_2 или \tilde{K}_2 (рис. 4). На небольших отрезках лучей arg $t = \pm 3\pi/4$ корни интегралов расположены квазипериодически и естественно ожидать, что все они замыкаются друг на друга; «нескомпенсированными» могут оказаться лишь несколько корней в области $|t| \sim 1$, которые могут быть топологически связанными с траекториями, идущими вдоль действительной оси.

Несколько слов о возможности ухода траектории на бесконечность. На примере нуль-мерного случая можно проследить [1], что при $t = \rho e^{i\chi}$ рост ρ приводит к убыванию g до нуля при $\chi < 3\pi/4$ и выходу на постоянное значение при $\chi > 3\pi/4$; аналогичная ситуация ожидается в общем случае. При d = 0 траектория уходит на бесконечность вдоль отрицательной полуоси, но затем возвращается в конечную часть комплексной плоскости, т. е. точка $t = \infty$ «проходится», но траектория в ней не заканчивается. Окончание же траектории в бесконечной точке (при подходе по другому направлению) представляется маловероятным: для неограниченного роста *д* траектория должна уходить на бесконечность, постепенно приближаясь к одному из лучей $\chi = \pm 3\pi/4$; при этом она должна пройти мимо бесконечного множества особых точек и не свернуть ни в одну из них.

Основной интерес представляет траектория, которая начинается при $t=+\infty$ и идет вдоль

Рис.5. Топология траекторий в плоскости t для случаев, когда зависимость g = f(t) на действительной оси монотонна (a) и немонотонна (b)

действительной оси. При $t \gg 1$ имеем очевидно $g \propto g_0 = 1/t^2$, тогда как при $t \ll 1$ возникает зависимость $g \propto t^{-d/2}$, обсуждавшаяся в разд. 3. При промежуточных t возможны два основных сценария.

а) Если зависимость g = f(t) на действительной оси строго монотонна, то $f'(t) \neq 0$ и траектория не может повернуть в комплексную плоскость: она продолжается до t = 0, тогда как все корни функциональных интегралов при комплексных t замыкаются друг на друга (рис. 5a).

б) Если зависимость g = f(t) немонотонна на действительной оси, то в простейшем случае имеется точка максимума t_1 и точка минимума t_2 (рис. 5δ). Тогда траектория, пришедшая из $t = +\infty$ в $t = t_1$, должна повернуть (согласно рис. 3δ) в точке $t = t_1$ под прямым углом в верхнюю (или нижнюю) полуплоскость и закончиться в одной из особых точек t_1^* . Аналогично, траектория, идущая вдоль действительной оси в точку t = 0, должна выходить на действительную ось в точке t_2 , а начинаться в некоторой комплексной точке t_2^* .

При плавном переходе от случая (а) к случаю (б) происходит перезамыкание траекторий (ср. рис. 5*a*

Рис. 6. Фактическая зависимость g = f(t) на действительной оси близка к маргинальной

и рис. 5б), а в маргинальном случае $t_1 = t_2$ (соответствующем точке перегиба) — их разветвление в соответствии с рис. 3*е*. Фактическая ситуация (разд. 6) близка к маргинальной: зависимость g = f(t) имеет плато от $t \sim 1$ до $t \sim (\Lambda/m)^{\epsilon}$ (рис. 6). Естественно ожидать, что изменением решеточного действия (14) она может «опрокидываться» как к случаю (а), так и к случаю (б). Поэтому уход траектории в комплексную плоскость (с реализацией результатов (13)) или ее сохранение на действительной оси (с реализацией (48)) определяется способом регуляризации функциональных интегралов.

6. ИНФОРМАЦИЯ ИЗ УРАВНЕНИЯ ГЕЛЛ-МАННА – ЛОУ

Уравнение Гелл-Манна – Лоу позволяет проанализировать связь перенормированного заряда g, относящегося к масштабу m, с его значением g_{Λ} на масштабе Λ ; последнее прямо связано с затравочным зарядом g_0 , но не совпадает с ним (см. ниже); соответствие $g_{\Lambda} \approx g_0$ имеет место только в области слабой связи.

1. Для $d=4-\epsilon$ с малым ϵ уравнение Гелл-Манна
– Лоу в области $g\lesssim 1$ может быть записано в виде

$$\frac{dg}{d\ln m} = \beta(g) = -\epsilon g + \beta_2 g^2 \tag{53}$$

и имеет неподвижную точку $g^* = \epsilon/\beta_2$. Интегрируя (53) с начальным условием $g = g_\Lambda$ при $m = \Lambda$, имеем

$$g = \frac{g_{\Lambda} \left(\Lambda/m\right)^{\epsilon}}{1 + \beta_2 g_{\Lambda} [\left(\Lambda/m\right)^{\epsilon} - 1]/\epsilon}, \quad g, g_{\Lambda} \lesssim 1.$$
 (54)

В области слабой связи $g_{\Lambda} \approx g_0$ и при $\epsilon \to 0$ получается известный результат [29]

Рис.7. Зависимости g от Λ/m при различных g_{Λ} (*a*) и зависимости g от g_{Λ} при различных Λ/m (δ)

$$g = \frac{g_0}{1 + \beta_2 g_0 \ln{(\Lambda/m)}}.$$
 (55)

С точки зрения уравнения (53) масштабы m и Λ находятся в произвольном соотношении. Зависимость g от Λ/m является возрастающей при $g_{\Lambda} < g^*$ и убывающей при $g_{\Lambda} > g^*$, выходя на постоянный предел g^* при $\Lambda/m \to \infty$ (рис. 7*a*). Зависимости g от g_{Λ} показаны на рис. 7*b*; если принять дополнительно для больших g

$$\beta(g) = \beta_{\infty} g, \quad g \gg 1, \tag{56}$$

так что

$$g = \left(\frac{m}{\Lambda}\right)^{\beta_{\infty}} g_{\Lambda}, \quad g, \, g_{\Lambda} \gtrsim 1, \tag{57}$$

то становится ясно, что эти зависимости являются

Рис.8. Топология траектории в плоскости t для $d = 4 - \epsilon$ с малым ϵ согласно (59)

монотонными⁹⁾ и не обладают никакими патологиями.

Однако, если считать Λ/m большим и пренебречь единицей в квадратной скобке (54)

$$g = \frac{g_0 \left(\Lambda/m\right)^{\epsilon}}{1 + \beta_2 g_0 \left(\Lambda/m\right)^{\epsilon}/\epsilon},\tag{58}$$

то ситуация меняется и большие значения g становятся недостижимыми при действительных g_0 ; полагая $g_0 = 1/t^2$, получим параметрическое представление (1) в виде

$$g = \frac{(\Lambda/m)^{\epsilon}}{t^2 + \beta_2 (\Lambda/m)^{\epsilon} / \epsilon},$$

$$\beta(g) = \frac{-\epsilon t^2 (\Lambda/m)^{\epsilon}}{\left[t^2 + \beta_2 (\Lambda/m)^{\epsilon} / \epsilon\right]^2},$$
(59)

где траектория в плоскости t поворачивает при t = 0 под прямым углом и заканчивается в полюсе Ландау $i[\beta_2(\Lambda/m)^{\epsilon}/\epsilon]$ (рис. 8). Мы видим, что поворот траектории в комплексную плоскость не содержит в себе ничего необычного и легко возникает в результате естественных приближений; заметим, что этот поворот не сопровождается никакими особенностями β -функции. Конечно, уравнения (59) справедливы лишь при $g, g_0 \leq 1$, и нельзя быть уверенным ни в точке поворота t = 0 (где $g_0 \to \infty$), ни в положении полюса (где $g \to \infty$).

Согласно (58), g имеет регулярное разложение по параметру $g_0(\Lambda/m)^{\epsilon}$, как это имеет место в диаграммных вычислениях (см. ниже) и как функция g_0 меняется на масштабе ~ $(m/\Lambda)^{\epsilon} \ll 1$, при превышении которого она выходит на константу g^* . Возникает плато, которое сохраняется до масштаба $g_0 \sim 1$, когда возникают отличия g_0 от g_Λ (см. ниже (61)), становится существенным отличие β -функции от (53) и меняется режим перенормировки массы (см. (35)); в результате происходит переход к режиму сильной связи, обсуждавшемуся в разд. 3, 4.

2. В рамках диаграммной техники разложение g по g_0 имеет следующую структуру¹⁰:

$$g = \sum_{N=1}^{\infty} \left[g_0 \left(\Lambda/m \right)^{\epsilon} \right]^N \sum_{K=0}^{N-1} A_N^K \times \left[\frac{1 - \left(\Lambda/m \right)^{-\epsilon}}{\epsilon} \right]^K, \quad A_1^0 = 1.$$
(60)

Полагая $m = \Lambda$, получим связь g_{Λ} с g_0 ,

$$g_{\Lambda} = g_0 + \sum_{N=2}^{\infty} A_N^0 g_0^N \equiv h(g_0), \qquad (61)$$

так что соответствие $g_{\Lambda} \approx g_0$ верно только при малых g_0 . Если зависимости g от g_{Λ} являются монотонными (рис. 76), то характер зависимостей g от g_0 определяется функцией $h(g_0)$. Если при росте g_0 функция $h(g_0)$ монотонно меняется от нуля до бесконечности, то реализуется случай рис. 5a и траектория t остается на действительной оси. При немонотонной функции $h(g_0)$ реализуется случай рис. 5d и траектории поворачивают в комплексную плоскость. Если $h(g_0)$ конечна при $g_0 \rightarrow \infty$, то особенность при t = 0 исчезает и большие g достигаются только при комплексных t. Функция $h(g_0)$ определяется коэффициентами A_N^0 , которые можно изменять, меняя решетку или иной способ регуляризации.

Обычно в диаграммных вычислениях при d < 4 верхний предел интегрирования по импульсу считают бесконечным, что устраняет $(\Lambda/m)^{-\epsilon}$ в квадратной скобке (60). Возникает разложение

$$g = \sum_{N=1}^{\infty} B_N \left[g_0 \left(\Lambda/m \right)^{\epsilon} \right]^N,$$

$$B_N = \sum_{K=0}^{N-1} A_N^K \epsilon^{-K},$$

(62)

 $^{^{9)}}$ В общем случае это ясно из рис. 7a,где кривые, соответствующие различным $g_\Lambda,$ не пересекаются при конечных $\Lambda/m.$

¹⁰⁾ В *N*-петлевом приближении имеется интегрирование по *N* импульсам, каждое из которых дает множитель $k^{-\epsilon}$, сводящийся к $\Lambda^{-\epsilon}$ и $m^{-\epsilon}$ при оценке на верхнем и нижнем пределах. Поэтому *N*-петлевой вклад содержит множитель u_0^{N+1} , умноженный на однородный полином *N*-й степени, составленный из $\Lambda^{-\epsilon}$ и $m^{-\epsilon}$. Результат (60) получается после учета соотношения $u_0 = g_0 \Lambda^{\epsilon}$, надлежащей группировки членов и выделения из коэффициентов степеней ϵ для соответствия при $\epsilon \to 0$ обычному логарифмическому разложению.

и связь g_{Λ} с g_{0}

$$g_{\Lambda} = \sum_{N=1}^{\infty} B_N g_0^N, \quad B_1 = 1,$$
 (63)

оказывается отличной от (61). Это отличие имеет особенно яркий характер при малых є: если согласно уравнению (61) (не содержащему ϵ) соотношение $g_\Lambda \approx g_0$ верно до масштаба $g_0 \sim 1$, то уравнению (63) соответствует результат $q_{\Lambda} = g_0/(1 + g_0/g^*)$ (следующий из (58)) и зависимость насыщается при $g_0 \sim \epsilon$. Подчеркнем, что при переходе от формулы (61) к уравнению (63) мы не произвели ничего серьезного: при *d* < 4 (после перенормировки массы) интегралы сходятся на больших импульсах и физически несущественно, считается ли верхний предел интегрирования бесконечным или большим, но конечным. Тем не менее связь перенормированного заряда с затравочным испытывает катастрофические изменения. Конечно, это не означает таких же изменений в наблюдаемых величинах, а лишь указывает на возможность двух способов описания.

а) При первом способе описания, соответствующем выражению (62) и возможном только при d < 4, предел $\Lambda \to \infty$ берется на раннем этапе и ряды теории возмущений по g строятся в виде, не содержащем информации об обрезании. Эти ряды имеют действительные коэффициенты и при обычных способах суммирования [23] дают действительные значения наблюдаемых. Результаты, не зависящие от обрезания, не могут гладко сшиться с решеточными разложениями разд. 3, 4, и уход траектории t в комплексную плоскость является совершенно понятным.

б) При втором способе описания, соответствующем выражению (60) и единственно возможном при d = 4 (т. е. в актуальной теории поля)¹¹⁾, предполагается явный способ регуляризации. При этом ренормгрупповые функции, функции Грина и пр. в результате перенормировок имеют конечный предел при $\Lambda \to \infty$, но сохраняют зависимость от способа обрезания (поскольку от него зависит определение заряда), исчезновение которой ожидается лишь в наблюдаемых величинах. При этом способе описания сохранение траектории t на действительной оси представляется возможным хотя бы для некоторых регуляризаций.

Пример малых ϵ наглядно показывает, что комплексность затравочного заряда g_0 не связана ни с какими патологиями и не имеет физического смысла.

3. В рамках разложения (62) связь g и g_0 полностью определяется β -функцией и может быть проанализирована в общем виде. Интегрируя уравнение Гелл-Манна – Лоу

$$\exp\{-\epsilon F(g)\} = \left(\frac{\Lambda}{m}\right)^{\epsilon} \exp\{-\epsilon F(g_{\Lambda})\},$$

$$F(g) = \int \frac{dg}{\beta(g)}$$
(64)

и полагая

$$\beta(g) = \begin{cases} -\epsilon g, & g \to 0, \\ \omega(g - g^*), & g \to g^*, \end{cases}$$
(65)

легко убедиться, что левая часть (64) регулярна по g и при малых g имеем $g \approx (\Lambda/m)^{\epsilon} g_{\Lambda} \approx (\Lambda/m)^{\epsilon} g_{0}$. Если определить связь g_{Λ} и g_{0} так, что

$$\exp\{-\epsilon F(g)\} = (\Lambda/m)^{\epsilon} g_0,$$

$$g_0 = \exp\{-\epsilon F(g_{\Lambda})\},$$
 (66)

то g окажется регулярной функцией параметра $g_0(\Lambda/m)^\epsilon$, как это требуется разложением (62). При $g \to g^*$ получим из уравнения (66)

$$g^* - g = \left(\frac{\Lambda}{m}\right)^{-\omega} g_0^{-\omega/\epsilon} = \left(\frac{\Lambda}{m}\right)^{-\omega} t^{2\omega/\epsilon}$$
 (67)

и поворот в комплексную плоскость происходит в точке t=0 под углом

$$\chi = \frac{\pi}{2} \, \frac{\epsilon}{\omega},\tag{68}$$

так что комплексные t соответствуют существенно комплексным (а не просто отрицательным) значениям g_0 . При этом вся картина оказывается качественно такой же, как в случае малых ϵ : в частности, зависимости g от g_0 и Λ/m одинаковы и соответствуют нижней кривой рис. 7a: она имеет постоянный предел g^* при $g_0 \to \infty$, что обычно и считается пределом сильной связи теории φ^4 [30].

Таким образом, в ренормировочной схеме, общепринятой в теории фазовых переходов [12] и соответствующей разложению (62), поворот в комплексную плоскость является неизбежным, а особенность при t = 0 вообще отсутствует. Противоречия с разд. 3 в этом нет, так как определение затравочного заряда в этой схеме (см. (63)) заведомо отлично от того, которое используется в решеточной версии функциональных интегралов (см. (61)).

¹¹⁾ Фактически он более естествен и в физике конденсированного состояния, где обрезание заведомо существует, а континуальный предел возможен лишь тогда, когда это не приводит к патологиям.

7. СИТУАЦИЯ С АНОМАЛЬНЫМИ РАЗМЕРНОСТЯМИ

Согласно разд. 6, поворот траектории t в комплексную плоскость или ее сохранение на действительной оси определяются ренормировочной схемой, т. е. связан со способом описания, не имеющим физического смысла. Результаты для асимптотики $\beta(g)$ подтверждают эту точку зрения: они одинаковы для сингулярности при t = 0 и сингулярности в комплексной точке t_c (ср. (48) и (13)). Для функций $\eta(g)$ и $\eta_2(g)$ результаты (48) и (13) различны; однако фактически аномальные размерности имеют физический смысл лишь вблизи неподвижной точки ренормгруппы g^* , тогда как вдали от нее являются техническими конструкциями, имеющими смысл лишь в конкретной схеме. Действительно, $\eta(g)$ и $\eta_2(q)$ определяются Z-факторами, которые по определению не имеют физического смысла, так как не входят в наблюдаемые величины. Лишь благодаря особой ситуации вблизи критической точки сингулярное поведение Z-факторов проявляется в наблюдаемых величинах. Поясним это на примере функции $\eta(q)$.

Как известно из теории фазовых переходов, вершина $\Gamma_R^{(0,2)}$ (обратный перенормированный пропагатор) при $m^2 > 0$ имеет регулярное разложение при малых p и сингулярное поведение при больших

$$\Gamma_R^{(0,2)}(p) = \begin{cases}
m^2 + p^2 + \alpha_1 p^4 + \alpha_2 p^6 + \dots, & p \lesssim \xi^{-1}, \\
\sim p^{2-\eta}, & p \gtrsim \xi^{-1}.
\end{cases}$$
(69)

Регулярное разложение удовлетворяет уравнениям ренормгруппы при произвольных коэффициентах $\alpha_1, \alpha_2, \ldots$, так что в принципе можно положить $\alpha_1 = \alpha_2 = \ldots = 0$ и выбрать регулярное решение $m^2 + p^2$ при произвольных p. Результат $\Gamma_R^{(0,2)}(p) \sim p^{2-\eta}$ является единственным решением только при $m^2 = 0$ (в точке перехода), а его справедливость для $p \gtrsim \xi^{-1}$ при конечных m^2 требует дополнительной аргументации: он не противоречит регулярному разложению, если коэффициенты $\alpha_1, \alpha_2, \ldots$ выбраны надлежащим образом и обеспечивают асимптотику $p^{2-\eta}$ при больших p. В рассматриваемом случае значение η при одном способе описания равно нулю и указывает на реализацию регулярного решения $m^2 + p^2$ при произвольных *p*. Но такое решение допустимо всегда и не противоречит значению $\eta = 2$, полученному при другом способе описания. Заметим, что инстантонные вычисления Полякова [31] (см. также [32]) могут быть интерпретированы [21] как решение одномерной теории φ^4 в пределе $g_0 \to \infty$; полученный результат для парного коррелятора

$$G_2(x,y) = A \exp(-m|x-y|)$$

как раз соответствует $\Gamma_R^{(0,2)}(p)=m^2+p^2$ в импульсном представлении.

Проведем рассуждения более формально, исходя из уравнения Каллана–Симанчика¹²⁾

$$\left[\frac{\partial}{\partial \ln \mu} + \beta(g)\frac{\partial}{\partial g} + \gamma_m(g)\frac{\partial}{\partial \ln \tau} - \eta(g)\right]\tilde{\Gamma}_R^{(0,2)} = 0, \quad (70)$$

где μ — произвольный масштаб импульса, $\tau \propto \delta m_0^2$ — расстояние до перехода, и $\gamma_m(g) = 2 - \nu^{-1}(g) = = \eta(g) - \eta_2(g)$. Его общее решение при конечных p и τ можно записать в виде

$$\tilde{\Gamma}_{R}^{(0,2)}(p,\tau) = \mu^{2} \exp\left\{\int dg \frac{\eta(g) - 2}{\beta(g)}\right\} \times F\left(\frac{p}{\mu} \exp\int \frac{dg}{\beta(g)}, \frac{\tau}{\mu^{2}} \exp\int \frac{dg}{\nu(g)\beta(g)}\right), \quad (71)$$

где F(x,y) — произвольная функция. Считая, что $\eta(g)$ и $\nu(g)$ постоянны в интересующем нас интервале значений g, имеем

$$\tilde{\Gamma}_R^{(0,2)}(p,\tau) = \mu^2 A(g)^{\eta-2} \times F\left(\frac{p}{\mu}A(g), \frac{\tau}{\mu^2}A(g)^{1/\nu}\right), \quad (72)$$

где A(g) с учетом (65), (56) имеет вид

$$A(g) = \exp \int \frac{dg}{\beta(g)} =$$

$$= \begin{cases} \sim g^{-1/\epsilon}, \quad g \to 0, \\ \sim (g - g^*)^{1/\omega}, \quad g \to g^*, \quad (73) \\ \sim g^{1/\beta_{\infty}}, \quad g \to \infty. \end{cases}$$

Для получения конечного решения в любом из трех пределов (когда A(g) стремится к нулю или к бесконечности) его нужно конструировать так, чтобы зависимость от A(g) исчезала. Для p = 0 или $\tau = 0$

¹²⁾ В исходной ренормировочной схеме, соответствующей (7), (8), уравнение Каллана – Симанчика имеет правую часть (см. [20, Sec. VI.A]) и неудобно для исследования. Мы имеем целью продемонстрировать лишь принципиальную возможность эквивалентности ситуаций $\eta = 0$ и $\eta = 2$, и пользуемся более удобной схемой [20, Sec. VI.C], отмечая тильдой другой способ ренормировки $\Gamma^{(0,2)}$.

$$\tilde{\Gamma}_{R}^{(0,2)}(0,\tau) \sim \tau^{\nu(2-\eta)}, \quad \tilde{\Gamma}_{R}^{(0,2)}(p,0) \sim p^{2-\eta}.$$
(74)

В общем случае можно принять $F(x,y)\sim x^\beta y^\alpha$ с $\beta=\nu(2-\eta-\alpha),$ так что

$$\tilde{\Gamma}_R^{(0,2)}(p,\tau) \sim \mu^2 \left(\frac{\tau}{\mu^2}\right)^{\nu(2-\eta)} \left(\frac{p\tau^{-\nu}}{\mu^{1-2\nu}}\right)^{\alpha}$$
(75)

является решением при произвольном α. В общем случае решение может иметь вид суперпозиции функций вида (75); в частности, для регулярного разложения по p²

$$\tilde{\Gamma}_{R}^{(0,2)}(p,\tau) = \mu^{2} \left(\frac{\tau}{\mu^{2}}\right)^{\nu(2-\eta)} \sum_{s=0}^{\infty} A_{s} \left(\frac{p\tau^{-\nu}}{\mu^{1-2\nu}}\right)^{2s} = A_{0} \mu^{2} \left(\frac{\tau}{\mu^{2}}\right)^{\nu(2-\eta)} + A_{1} p^{2} \left(\frac{\tau}{\mu^{2}}\right)^{-\nu\eta} + A_{2} \frac{p^{4}}{\mu^{2}} \left(\frac{\tau}{\mu^{2}}\right)^{-2\nu-\nu\eta} + \dots$$
(76)

Полагая $\tilde{Z}=(\tau/\mu^2)^{\nu\eta},\,m^2=\mu^2(\tau/\mu^2)^{2\nu},\,A_0=A_1==1,$ имеем

$$\tilde{\Gamma}_{R}^{(0,2)}(p,\tau) = \tilde{Z}^{-1}\left(m^{2} + p^{2} + A_{2}\frac{p^{4}}{m^{2}} + \dots\right), \quad (77)$$

т.е. регулярное решение возможно при произвольном значении η , как и указывалось выше. Таким образом, пределы $\eta \to 0$ и $\eta \to 2$ действительно могут соответствовать одной и той же физической ситуации.

Результаты для нулевых импульсов типа $m^2 \sim \tau^{2\nu}$ и $\tilde{\Gamma}_R^{(0,2)}(0,\tau) \sim \tau^{\nu(2-\eta)}$ являются конструктивными лишь вблизи критической точки, когда соотношения наблюдаемых величин с зарядами ренормгруппы могут быть линеаризованы и расстояние до перехода τ определяется линейным отклонением управляющего параметра от критического значения. Вдали от точки перехода такие соотношения не несут существенной информации, так как расстояние до перехода может определяться разными способами.

8. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Основной аргумент против комплексных затравочных параметров основан на представлении S-матрицы через дайсоновскую T-экспоненту, согласно которому эрмитовость затравочного гамильтониана является необходимой для унитарности теории.

Фактически, ситуация является более сложной, что ясно из аксиоматической конструкции S-матрицы, предложенной Боголюбовым [9]: согласно ей, наиболее общий вид S-матрицы дается T-экспонентой от $i\mathcal{A}$, где \mathcal{A} является суммой (a) затравочного действия, и (б) последовательности «постоянных интегрирования», определяемых квазилокальными операторами. В регуляризованной теории «постоянные интегрирования» можно положить равными нулю и вернуться к дайсоновской форме S-матрицы. Однако в процессе перенормировки эти постоянные считаются отличными от нуля и выбираются из условия отсутствия расходимостей; затем эти постоянные включаются в действие за счет изменения его параметров. Поэтому для истинно континуальной теории S-матрица определяется перенормированным действием, тогда как затравочный гамильтониан и уравнение Шредингера являются плохо определенными; с этой точки зрения, комплексность затравочных параметров не имеет никакого значения.

Некоторые вопросы остаются в отношении регуляризованной теории, когда и затравочный, и перенормированный лагранжианы имеют смысл, и в отношении унитарности теории возможны противоречивые суждения. Аналогичная ситуация обсуждалась в связи с точно решаемой моделью Ли [3], для которой¹³

$$g^2 = \frac{g_0^2}{1 + g_0^2/g_c^2} \tag{78}$$

и затравочный заряд g_0 является комплексным для больших значений перенормированного заряда g(рис. 9). Согласно работе [4], модель Ли физически неудовлетворительна для $g > g_c$ из-за наличия состояний с отрицательной нормой («ghost states»); но недавно выяснено [5, 6], что проблема «духов» вполне решаема и модель Ли является приемлемой физической теорией. Основная идея работы [5] состоит в том, что аналитическое продолжение параметров гамильтониана в комплексную плоскость должно сопровождаться модификацией скалярного произведения для соответствующего гильбертова пространства,

$$(f,g) = \int f^*(x)g(x)dx \to (f,g)_G = (f,\hat{G}g),$$
 (79)

¹³⁾ Ср. с формулой Ландау, Абрикосова, Халатникова для квантовой электродинамики [29].

Рис.9. Связь перенормированного заряда с затравочным в модели Ли

и при надлежащем выборе оператора \hat{G} затравочный гамильтониан оказывается эрмитовым относительно нового скалярного произведения. В результате все состояния модели Ли имеют положительную норму, а *S*-матрица является унитарной. Аналогичная процедура должна существовать в общем случае для устранения указанного противоречия.

Фактически определение заряда неоднозначно из-за неоднозначности ренормировочной схемы [11], связанной с произвольностью «постоянных интегрирования» в боголюбовской конструкции; поэтому комплексность g_0 имеет относительный смысл. Сингулярности параметрического представления (1) при t = 0 и в комплексной точке t_c могут переводиться одна в другую путем переопределения затравочного заряда g_0 . По этой причине результат настоящей работы для β -функции совпадает с тем, который получен в [1] из совершенно других соображений.

Заметим, что полученный результат для асимптотики β -функции имеет простой смысл. Используя (9), (39), можно записать

$$g = -m^d \frac{K_4 K_0}{K_2^2}, \quad m^2 = \frac{K_2}{\tilde{K}_2}.$$
 (80)

Для зависимости $g \propto m^d$ результат $\beta(g) = d g$ тривиально следует из определения (8) для β -функции. Его справедливость в асимптотической области обеспечена при выполнении следующих условий: (а) предел $m \to \infty$ может быть реализован при постоянном значении дроби $K_4 K_0/K_2^2$, и (б) этот предел возможен за счет изменения только m_0 (при постоянных g_0 и Λ). Эти условия легко выполняются вблизи корня \tilde{K}_2 в комплексной плоскости. Для особенности при t = 0 указанные условия буквально не выполнены, но справедливы в ослабленной форме: за счет

Рис.10. Для особенности в точке t = 0 зависимость $g \propto m^d$ можно «склеить из кусочков»

изменения m_0 можно обеспечить изменение m при $K_4K_0/K_2^2 = \text{const}$ в некотором широком интервале, тогда как путем изменения t этот интервал можно сдвигать в область все больших и больших значений (разд. 4). Поэтому выбрав некоторую убывающую последовательность $t_1 > t_2 > t_3 \dots$, зависимость $g \propto m^d$ можно «склеить из кусочков» (рис. 10).

В отношении предложенной схемы возможны возражения, что функциональные интегралы используются в «нефизическом» режиме $\xi \leq a$. Однако (с консервативной точки зрения) можно вообще возражать против решеточной интерпретации функциональных интегралов, как и против любого другого способа регуляризации¹⁴⁾. Основным аргументом в пользу допустимости такого подхода является возможность устранить из физических результатов все атрибуты затравочной теории; но это верно и в предлагаемой схеме, по крайней мере в отношении результатов (48). Затравочная теория является вспомогательной конструкцией и предъявлять к ней какие-то «физические» требования некорректно. С другой стороны, можно усилить условия (44) и перейти к пределу

$$t \to 0, \quad \kappa \to \infty, \quad t\kappa = \text{const.}$$
 (81)

Тогда переход к выражению (42) не связан ни с какими приближениями, но оно сохраняет строгую эквивалентность теории φ^4 при специальном выборе затравочных параметров: это обеспечивает сохранение формы лагранжиана в процессе перенормировок. При $t\kappa \gg 1$ результат (42) удовлетворяет всем физическим требованиям и соответствует за-

¹⁴⁾ Такие идеи возникают, например, в связи с концепцией ренормалонов [25, 26]: ренормалонные сингулярности обусловлены сколь угодно большими импульсами и устраняются при любой регуляризации.

ведомо правильной теории; при $t\kappa \lesssim 1$ он является ее строгим аналитическим продолжением. Наконец, в физике конденсированного состояния решеточный гамильтониан является допустимым микроскопическим гамильтонианом и может использоваться в любом режиме. Поэтому результаты (48) заведомо справедливы в теории фазовых переходов.

Несколько слов о зависимости результатов от конфигурации интегралов перекрытия $J_{\mathbf{x}}$. В принципе можно не стремиться к исключению $J_{\mathbf{x}}$ в общем виде, а выбрать их так, чтобы решеточный спектр $\epsilon(p)$ максимально точно совпадал с квадратичным. Результат такой процедуры известен и соответствует приближению почти свободных электронов в теории твердого тела. При этом истинной теории поля будет соответствовать не континуальный предел $a \rightarrow 0$, а предел «пустой решетки».

В заключение заметим, что верхняя оценка для массы «хиггса», основанная на тривиальности теории φ^4 [33] («triviality bound»), оказывается несостоятельной. При асимптотике $\beta(g) \sim g$ полюс Ландау отсутствует и никаких внутренних ограничений на применимость Стандартной модели, подразумеваемых в этой оценке, на самом деле не существует.

ЛИТЕРАТУРА

- 1. И. М. Суслов, ЖЭТФ 134, 490 (2008).
- **2**. И. М. Суслов, ЖЭТФ **135**, 1129 (2009).
- 3. T. D. Lee, Phys. Rev. 95, 1329 (1954).
- G. Källen and W. Pauli, Mat.-Fyz. Medd. 30, № 7 (1955).
- C. M. Bender, S. F. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005).
- C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002); C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
- S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Co., Evanston (1961), Ch. 12.
- 8. G. Barton, Introduction to Advanced Field Theory, John Willey & Sons, New York (1963), Ch. 12.
- 9. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).
- А. А. Погорелов, И. М. Суслов, ЖЭТФ 133, 1277 (2008).

- **11**. А. А. Владимиров, Д. В. Ширков, УФН **129**, 407 (1979).
- G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B 17, 1365 (1978); J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980).
- C. Domb, in *Phase Transitions and Critical Phenome*na, ed. by C. Domb and M. S. Green, Academic, New York (1974), Vol. 3.
- 14. C. M. Bender, F. Cooper, G. S. Guralnik, and D. H. Sharp, Phys. Rev. D 19, 1865 (1979).
- C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. H. Sharp, Phys. Rev. D 23, 2976 (1981); 23, 2999 (1981); 24, 2683 (1981).
- P. Castoldi and C. Schomblond, Nucl. Phys. B 139, 269 (1978).
- R. Benzi, G. Martinelli, and G. Parisi, Nucl. Phys. B 135, 429 (1978).
- 18. M. Frasca, arXiv:0909.2428.
- 19. Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- 20. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, ed. by C. Domb and M. S. Green, Academic, New York (1976), Vol. VI.
- 21. C. M. Bender and S. Boettcher, Phys. Rev. D 48, 4919 (1993).
- F. J. Dyson, Phys. Rev. 75, 1736 (1949); G.'t Hooft, Nucl. Phys. B 35, 167 (1971).
- **23**. И. М. Суслов, ЖЭТФ **127**, 1350 (2005).
- 24. И. М. Суслов, ЖЭТФ 116, 369 (1999).
- 25. G. 't Hooft, in: The whys of Subnuclear Physics, (Erice, 1977), ed. by A. Zichichi, Plenum Press, New York (1979).
- 26. M. Beneke, Phys. Rep. 317, 1 (1999), Sec. 2.4.
- **27**. И. М. Суслов, ЖЭТФ **126**, 542 (2004).
- 28. M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).
- **29**. Л. Д. Ландау, А. А. Абрикосов, И. М. Халатников, ДАН СССР **95**, 497, 773, 1177 (1954).
- **30**. H. Kleinert and V. Schulte-Frohlinde, *Critical Properties of* ϕ^4 *Theories*, World Scientific, Singapore (2001).
- 31. A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
- 32. E. Gildener and A. Patrasciouiu, Phys. Rev. D 16, 423 (1977).
- 33. R. F. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).